1. Let \(p(x) = x^3 - x + 1 \) and let \(a \) be a root of \(p(x) \).
 (a) Find the multiplicative inverse of \(1 - 2a + 3a^2 \) in \(\mathbb{Q}(a) \).
 (b) Let \(b = 2 - 3a + 2a^2 \). Find the irreducible polynomial of \(b \) over \(\mathbb{Q} \).

2. Prove that regular polygon of seven sides is not constructible. (Hint: Write \(2 \cos(\frac{2\pi}{7}) = e^{2\pi i/7} + e^{-2\pi i/7} \) and prove that \(2 \cos(\frac{2\pi}{7}) \) satisfies \(x^3 + x^2 - 2x - 1 \).

3. If \(\alpha_1, \alpha_2, \alpha_3, \) and \(\alpha_4 \) are the roots of the fourth-degree polynomial \(x^4 + 7x^2 - 6x + 1 \).
 (a) Find the fourth-degree polynomial over \(\mathbb{Q} \) whose roots are \(\alpha_1^2, \alpha_2^2, \alpha_3^2, \) and \(\alpha_4^2 \).
 (b) Find the value of \(\alpha_1^2 \alpha_2^2 + \alpha_1^2 \alpha_3^2 + \alpha_1^2 \alpha_4^2 + \alpha_2^2 \alpha_3^2 + \alpha_2^2 \alpha_4^2 + \alpha_3^2 \alpha_4^2 \).

4. Given the polynomial \(p(x) = x^4 - 5 \). Our goal is to construct and identify the Galois group \(G \) of \(p(x) \) over \(\mathbb{Q} \). Since each group element is a field automorphism, we can think of it as a permutation on the roots of \(p(x) \). For instance, let the roots be denoted by \(\alpha_1, \alpha_2, \alpha_3, \) and \(\alpha_4 \). Then \(\sigma(\alpha_i) \) must also be a root of \(p(x) \). Let \(\sigma(\alpha_i) = \alpha_j \) for \(1 \leq i, j \leq 4 \). Thus \(\sigma \) in considered as the permutation \(\alpha_i \rightarrow \alpha_j \), for \(1 \leq i, j \leq 4 \). In this way the Galois group \(G \) is identified as a subgroup of \(S_4 \).
 (a) Find the cycle structure for each element of \(G \).
 (b) Determine \(|G| \) and identify the isomorphic structure of \(G \), (i.e. \(G \) is isomorphic to what kind of known group.)

5. Do the same as in problem 4 for the polynomial \(q(x) = (x^2 - 3)(x^2 + 1)(x^3 - 1) \).