1. This problem is to verify Cauchy integral theorem.
 (a) Consider the contour integral \(\int_C \frac{e^z}{z^2 + 9} \, dz \) where the contour \(C \): Start from 0 going along the parabola \(y = x^2 \) to reach the point \(1 + i \), then return to the origin by moving along the parabola \(y = \sqrt{x} \).
 To do direct evaluation for the integral \(\int_C \frac{e^z}{z^2 + 9} \, dz \) we need to break the contour \(C \) into two parts \(C_1 \) and \(C_2 \), where \(C_1 \) moves from 0 to \(1 + i \) along the parabola \(y = x^2 \), and \(C_2 \) comes back to 0 along the other parabola. That is, \(\int_C \frac{e^z}{z^2 + 9} \, dz = \int_{C_1} \frac{e^z}{z^2 + 9} \, dz + \int_{C_2} \frac{e^z}{z^2 + 9} \, dz \). To evaluate \(\int_{C_1} \frac{e^z}{z^2 + 9} \, dz \) we parametrize \(C_1 : z(t) = t + it^2, 0 \leq t \leq 1 \). This gives \(dz = (1 + 2it) \, dt \). And insert this parametrization into the integral for evaluation. In this way \(\int_{C_1} \frac{e^z}{z^2 + 9} \, dz \) is converted into an ordinary integral with complex integrand \(\int_0^1 \frac{e^{t+it^2}}{(t+it^2)^2 + 9} \, (1 + 2it) \, dt \). We now call for Maple for evaluating \(\int_0^1 (\ast) \, dt \). This is how \(\int_{C_1} \frac{e^z}{z^2 + 9} \, dz \) is computed directly. What is the value of \(\int_{C_1} \frac{e^z}{z^2 + 9} \, dz \)?
 (b) In a similar way we can compute \(\int_{C_2} \frac{e^z}{z^2 + 9} \, dz \). What is the value of \(\int_{C_2} \frac{e^z}{z^2 + 9} \, dz \)?
 (c) The original contour integral \(\int_C \frac{e^z}{z^2 + 9} \, dz \) is the sum of them. What is the value of \(\int_C \frac{e^z}{z^2 + 9} \, dz \)?
 Does the result of your calculation for \(\int_C \frac{e^z}{z^2 + 9} \, dz \) agree with what Cauchy integral theorem predicts?

2. This problem is to verify Cauchy integral formula.
 We now change the contour \(C \) in the integral in problem 1 to the circle \(|z| = 5 \) and still retain the same integrand \(\frac{e^z}{z^2 + 9} \). That is, we want to compute the contour integral \(\int_{|z|=5} \frac{e^z}{z^2 + 9} \, dz \). An obvious parametrization for the contour is \(z(t) = 5e^{it}, 0 \leq t \leq 2\pi \). You may want to use this to carry out a direct numerical evaluation using Maple. The procedure is just the same as in problem 1.
 (a) What is the result of your numerical calculation for the integral \(\int_{|z|=5} \frac{e^z}{z^2 + 9} \, dz \)?
 (b) What is the theoretical value of the integral as implied by Cauchy integral formula? Your numerical computation need to confirm this theoretical value.