1. (25 points) Evaluate the circulation \(\oint_C \mathbf{F} \cdot d\mathbf{r} \) using Stokes’s theorem. Here the vector field \(\mathbf{F} = x^2\mathbf{i} - xz\mathbf{j} + 5y^2\mathbf{k} \) and the path \(C \) is the circle in the plane \(x = 4 \) defined by equations: \(y^2 + z^2 = 2, x = 4 \). You must use Stokes’s theorem to do the problem. Any other method will not be accepted.

Solution: By Stokes’s theorem \(\oint_C \mathbf{F} \cdot d\mathbf{r} = \iint_S \nabla \times \mathbf{F} \cdot d\mathbf{A} \), where \(S \) is the circular disc bounded by \(C \) in the plane \(x = 4 \). Since \(S \) is in the plane \(x = 4 \) the unit surface normal \(\mathbf{n} \) is a constant vector which can be chosen as \(\mathbf{i} \). Now a direct calculation gives

\[
\nabla \times \mathbf{F} = \begin{vmatrix}
 \mathbf{i} & \mathbf{j} & \mathbf{k} \\
 \partial_x & \partial_y & \partial_z \\
 x^2 & -xz & 5y^2
\end{vmatrix} = (10y + x)\mathbf{i} - z\mathbf{k}.
\]

We plug these expressions in the above integral to get

\[
\iint_S \nabla \times \mathbf{F} \cdot d\mathbf{A} = \iiint_R ((10y + x)\mathbf{i} - z\mathbf{k}) \cdot (10y + x) dA = \iiint_R (10y + 4) dA,
\]

where region \(R \) is the disc \(y^2 + z^2 \leq 2 \) in the \(y-z \) plane. Look before we leap when it comes to evaluating the above integral. The integral \(\iiint_R y dA \) is zero because of symmetry of integrand \(y \) and region \(R \). Hence \(\iiint_R (10y + 4) dA = 10 \iiint_R y dA + \iiint_R 4 dA = 0 + 4 \text{(area of } R) = 4\pi (\sqrt{2})^2 = 8\pi. \)

2. (25 points) A circular cable of infinite length aligned with the \(z \)-axis is equipped with a constant charge density \(c \). The radius of the cable is \(a \). Calculate the electric field \(\mathbf{E} \) in the region inside the cable. Gauss’s law must be applied to solve the problem.

Solution: Choose a field point \(P \) where the distance between \(P \) and the axis of the cable is \(r, r < a \). The Gaussian surface \(S \) is selected as the closed cylindrical surface with radius \(r \) and length \(L \). By Gauss’ law we have

\[
\iint_S \mathbf{D} \cdot d\mathbf{A} = Q_{\text{total}}.
\]

To evaluate the flux integral \(\iint_S \mathbf{D} \cdot d\mathbf{A} \) we decompose it as

\[
\iint_S \mathbf{D} \cdot d\mathbf{A} = \iint_{\text{upper lid}} (*) dA + \iint_{\text{lower lid}} (*) dA + \iint_{\text{lateral face}} (*) dA = I_1 + I_2 + I_3.
\]

To calculate \(I_1 \), use the fact that the surface normal \(\mathbf{n} \) of the lid is \(\mathbf{k} \) and \(\mathbf{D} \) is radial so that they are perpendicular. Hence \(\mathbf{D} \cdot \mathbf{n} = 0 \). This gives \(I_1 = 0 \). Similarly \(I_2 = 0 \). Now since \(\mathbf{D} \) and \(\mathbf{n} \) are both radial on the lateral face of \(S \), hence \(\mathbf{D} \cdot \mathbf{n} = |\mathbf{D}| \) and \(I_3 = \int_{\text{lateral face}} |\mathbf{D}| dA. \) Again \(|\mathbf{D}| \) is everywhere the same on the lateral face, it is a constant. Hence \(\int_{\text{lateral face}} |\mathbf{D}| dA = |\mathbf{D}| \int_{\text{lateral face}} dA = |\mathbf{D}| \text{(area of the lateral face)} = |\mathbf{D}| (2\pi r L) \). We collect the result:

\[
\iint_S \mathbf{D} \cdot d\mathbf{A} = |\mathbf{D}| (2\pi r L).
\]

To calculate \(Q_{\text{total}} \), we note that the solid \(B \) enclosed in the Gaussian surface \(S \) is a cylinder of radius \(r \) and length \(L \). It is an simple fact that the volume on \(B \) \(= (\pi r^2) L \). Hence the total charge contained in \(S \) is just the constant charge density \(c \) times \(\text{volume of } B \Rightarrow Q_{\text{total}} = c(\pi r^2)L \)

Now we equate \(|\mathbf{D}| (2\pi r L) = c(\pi r^2)L \Rightarrow |\mathbf{D}| = \frac{c(\pi r^2)L}{(2\pi r L)} = \frac{c}{2} r \Rightarrow |\mathbf{E}| = \frac{c}{2\epsilon} r \). We summarize:
\[E = \frac{c}{2\pi} r a, r < a \]