CS 457: Data Structures and Algorithms 1
Fall 2003-2004 Homework

5. (25 Pts.) Join operation on redblack trees

The join operation takes two dynamic sets S_1 and S_2 and an element x such that for any $x_1 \in S_1$ and $x_2 \in S_2$, we have $\text{key}[x_1] \leq \text{key}[x] \leq \text{key}[x_2]$. It returns a set $S = S_1 \cup \{x\} \cup S_2$. In this problem, we investigate how to implement the join operation on redblack trees.

(a) Given a redblack tree T, we store its blackheight as the field $\text{bh}[T]$. Argue that this field can be maintained by RBINSERT and RBDELETE (as given in the textbook) without requiring extra storage in the nodes of the tree and without increasing the asymptotic running times. Show that while descending through T, we can determine the blackheight of each node we visit in $O(1)$ time per node visited.

We wish to implement the operation “$\text{RBJOIN}(T_1, x, T_2)$”, which may destroy T_1 and T_2 and returns a redblack tree $T = T_1 \cup \{x\} \cup T_2$. Let n be the total number of nodes in T_1 and T_2.

(b) Assume that $\text{bh}[T_1] \geq \text{bh}[T_2]$. Describe an $O(\log n)$-time algorithm that finds a black node y in T_1 with the largest key from among those nodes whose blackheight is $\text{bh}[T_2]$.

(c) Let T_y be the subtree rooted at y. Describe how $T_y \cup \{x\} \cup T_2$ can replace T_y in $O(1)$ time without destroying the binarysearchtree property.

Consider the following redblack properties:

- every node is either red or black
- every leaf is black
- for each node, all paths from the node to descendant leaves contain the same number of black nodes

(d) What color should we make x so that the above redblack properties are maintained?

Consider the following redblack properties:

- the root is black
- if a node is red, then both its children are black

(e) Describe how the above two properties can be enforced in $O(\log n)$ time.

(f) Argue that the running time of “RBJOIN” is $O(\log n)$.