This week

- Recurrences
 - Merge-Sort
- Master Theorem
- Quick Sort
Merge-Sort

- **Problem**: Given a list S of n integers, create a sorted list of elements in S.
- **Merge-sort Algorithm**:
 - **Divide**: If S has at least two elements (nothing needs to be done if S is empty or has only one element), remove all the elements from S and put them into two sequences, S_1 and S_2, each containing about half of the elements of S.
 - **Recursion**: Sort sequences S_1 and S_2.
 - **Conquer**: Put back the elements into S by merging the sorted sequences S_1 and S_2 into a unique sorted sequence.

Merging Two Sorted Sequences

- **Problem**: Given two sequences S_1 and S_2 of sizes n_1 and n_2, create a (union) sorted list S (of size $n=n_1+n_2$).
- **Algorithm** $\text{Merge}(S_1, S_2, S)$:
 - $\text{top}(S_i) =$ first element in S_i, for i in $\{1, 2\}$.
 - While S_1 is not empty and S_2 is not empty do
 - If $\text{top}(S_1) < \text{top}(S_2)$ then
 - move $\text{top}(S_1)$ at the end of S
 - advance $\text{top}(S_1)$
 - Else
 - move $\text{top}(S_2)$ at the end of S
 - advance $\text{top}(S_2)$
 - While S_1 is not empty do
 - move the remaining of S_1 to S
 - While S_2 is not empty do
 - move the remaining of S_2 to S
Recurrence for Merge Sort:

- Recurrence Relation:
 \[T(n) = 2T(n/2) + n \]
 \[T(1) = 1 \]

- Solution by unfolding:
 \[T(n) = 2(2T(n/4)+(n/2))+n \]
 \[= 4T(n/2) + 2n \]
 \[= 4(2T(n/8)+(n/4))+2n \]
 \[= 8T(n/8) + 3n = \ldots \]
 \[= 2^iT(n/2^i) + i.n \]

The expansion stops for \(i = \log n \)

\[T(n) = 2^{\log n} + n \log n \]

Total Number of moves:

\[T(n) = n + n \log n = O(n \log n) \]

Iterative recurrences

- Example:
 \[T(n) = 4T(n/4) + n \]
 \[= n + 4(n/2 + 4T(n/4)) \]
 \[= n + 2n + 16T(n/4) \]
 \[= n + 2n + 16[n/4 + 4T(n/8)] \]
 \[= n + 2n + 4n + 4T(n/8) \]
 \[= n + 2n + 4n + \ldots \]
 \[= n \sum_{i=0}^{\log n-1} 2^i + 4^{\log n}T(1) \]
 \[= \Theta(n^2) + \Theta(n^2) \]

- Disadvantage:
 - Tedious
 - Error-Prone

- Use to generate initial guess, and then prove by induction.
Solving Recurrences by “Guess and Prove”

- Recurrence relation (for all even \(n \)):
 \[
 T(n) = 2T(n/2) + n \\
 T(1) = 1
 \]

- Step 1: Take a wild guess that
 \[
 T(n) = \log n + n \log n
 \]

- Step 2: Prove it by induction:
 Basis
 \[
 T(1) = 1 + \log 1 = 1
 \]
 Inductive step
 assume \(T(n) = n + n \log n \) and prove it for next case \((n+2) \):
 \[
 T(n+2) = 2T((n+2)/2) + (n+2) \\
 = 2[(n+2)/2 + (n+2)/2 \log (n+2)/2] + (n+2) \\
 = 2[(n+2)/2 + (n+2)/2[(\log (n+2))-1]] + (n+2) \\
 = (n+2) \log (n+2) + (n+2)
 \]

Initial Condition

- Can initial condition affect the solution?
 \[
 T(n) = [T(n/2)]^2
 \]
 If \(T(1) = 2 \) \(\Rightarrow \) \(T(n) = 2^n \)
 If \(T(1) = 3 \) \(\Rightarrow \) \(T(n) = 3^n \)
 If \(T(1) = 1 \) \(\Rightarrow \) \(T(n) = 1 \)

- \(n \) was assumed to be a power of 2.
Recursion Tree

- Example: \(T(n) = T(n/4) + T(n/2) + n^2 \)

At \(k \)-the level we get a general formula: \(i \) steps right, \(k-i \) left

\[
n^2 \sum_{i} \binom{k}{i} \left(2^{-i} 4^{-(k-i)} \right)^2 = n^2 \sum_{i} \binom{k}{i} \left(4^{-i} 16^{-(k-i)} \right)^2 \\
= n^2 \left[\frac{1}{4} + \frac{1}{16} \right] = n^2 \left[\frac{5}{16} \right]^k \\
= \Theta(n^2)
\]

Master Method

- Consider the following recurrence
 1. \(f(n) = O(n^{\log_b a - \varepsilon}), \varepsilon > 0 \Rightarrow \Theta(n^{\log_b a}) \)
 2. \(f(n) = O(n^{\log_b a} \log^k n), k > 0 \Rightarrow \Theta(n^{\log_b a} \log^{k+1} n) \)
 3. \(f(n) = O(n^{\log_b a + \varepsilon}), \varepsilon > 0 \Rightarrow \Theta(f(n)) \)

- Let \(Q = n^{\log_b a} \). Then the cases are
 - \(Q \) polynomially larger than \(f \)
 - \(f \) larger than \(Q \) by a polynomial factor
 - \(Q \) polynomially smaller than \(f \)
Build recursive tree

The tree:

- $f(n)$
- $af(n/b)$
- $a^2f(n/b^2)$

Last row: $\Theta(a^{\log_a a}) = \Theta(n^{\log_a a})$ elements, each one $\Theta(1)$.

Total: $\Theta(n^{\log_a a}) + \sum_{i=1}^{\log_a n - 1} a^i f(n/b^i)$

Which term dominates?

Back to Algorithms

- **Quick Sort**
 - Sort in place
 - Very practical
 - Divide-and-conquer

- **Algorithm**
 - Divide into two arrays around the first element
 - Recursively sort each array
 - Merge/combine-trivial
Partition Routine

\[
\text{Partition}(A, p, r) \\
\quad x = A(r) \\
\quad i = p - 1 \\
\quad \text{for } j = p \text{ to } r - 1 \\
\quad \quad \text{if } A(j) \leq x \text{ then} \\
\quad \quad \quad i++ \\
\quad \quad \quad \text{exchange}(A(i), A(j)) \\
\quad \text{exchange}(A(i+1), A(r)) \\
\quad \text{return}(i + 1)
\]

\[
\begin{array}{|c|c|c|}
\hline
\leq x & > x & ?? \\
\hline
p & i & j & r \\
\hline
\end{array}
\]

Quick Sort

\[
\text{Quicksort}(A, p, r) \\
\text{while } (p < r) \\
\quad q = \text{partition}(A, p, r) \\
\quad \text{Quicksort}(A, p, q-1) \\
\quad \text{Quicksort}(A, q+1, r)
\]

- To simplify, assume distinct elements:
 - Lucky always an even element: \(T(n) = 2T(n/2) + \Theta(n) = \Theta(n \log n) \)
 - Unlucky: \(T(n) = 2T(0) + T(n-1) + \Theta(n) = \Theta(n^2) \)

- How to avoid bad case?
 - Partition around middle element (does not work!)
 - Idea: Partition around a random element!
QuickSort (cont'd.)

- Partition around a Randomly chosen element and let \(T(n) \) be the expected time to sort.
- Consider the case where the partition is \((k, n-k-1)\). In this case, the expected time to terminate is:
 \[
 T(k) + T(n-k-1) + \Theta(n)
 \]
- Condition on \(k \) being a specific value, note that any value of \(k \) from 0 to \(n-1 \) is equally likely:
 \[
 T(n) = \sum_k \Pr[(k, n-k-1) \text{split}] T(n \mid (k, n-k-1) \text{split})
 \]
 \[
 = \frac{1}{n} \sum_k [T(k) + T(n-k-1) + \Theta(n)]
 \]
 \[
 = \frac{2}{n} \sum_{k=0}^{n-1} [T(k) + \Theta(n)]
 \]

Solving the recurrence

- Next: We try to prove that \(T(n) \leq an \log n + b \)
 First, Choose \(b \) large enough to satisfy \(T(1) \leq a \log 1 + b = b \)
- Inductive step:
 \[
 T(n) = \frac{2}{n} \sum_{k=1}^{n-1} T(k) + \Theta(n) \leq \frac{2}{n} \sum_{k=1}^{n-1} ak \log k + b + \Theta(n)
 \]
 \[
 = \frac{2a}{n} \sum_{k=1}^{n-1} k \log k + \frac{2}{n} nb + \Theta(n)
 \]
 Need to prove this is \(\leq an \log n + b + \Theta(n) \)
 \[
 \leq \frac{2a}{n} \left(\frac{1}{2} n^2 \log n - \frac{1}{8} n^2 \right) + 2b + \Theta(n)
 \]
 \[
 = an \log n + b + \left(\Theta(n) + b - \frac{an}{4} \right)
 \]
Technical Lemma

- We need to show $n^2 \log n$ bound is true.

$$\sum_{k=1}^{n-1} k \log k = \sum_{k=1}^{\left\lfloor \frac{n-1}{2} \right\rfloor} k \log k + \sum_{k=\left\lceil \frac{n}{2} \right\rceil}^{n-1} k \log k$$

$$\leq \log n \left\{ \sum_{k=1}^{\left\lfloor \frac{n-1}{2} \right\rfloor} k - \sum_{k=1}^{\left\lceil \frac{n}{2} \right\rceil} k \right\}$$

$$\leq \log n \frac{n(n-1)}{2} - \frac{n}{2} \left(\frac{n}{2} - 1 \right)$$

$$\leq \frac{1}{2} n^2 \log n - \frac{n^2}{8}$$