Greedy MST

- The greedy algorithm tries to solve the MST problem by making locally optimal choices:
 1. Sort the edges by weight.
 2. For each edge on sorted list, include that in the tree if it does form a cycle with the edges already taken; Otherwise discard it
- The algorithm can be halted as soon as \(n-1 \) edges have been kept.
- Step 1. takes \(O(m \log m) = O(m \log n) \).
- Today, we will see that Step 2 can be done in \(O(n \log n) \) time, later we will present an linear time implementation from this step.
Set Operation

- In the proof of running time for our MST algorithm we will use the following set operations:
 - **Make-Set**(v): creates a set containing element v, {v}.
 - **Find-Set**(u): returns the set to which v belongs to.
 - **Union**(u,v): creates a set which is the union of the two sets, one containing v and one containing u.

- As an example, we can use a pointer to implement a set system: **Make-Set**(v) will create a single node containing element v.
 Find-set(u) will return the name of the first element in the set that contains u, and finally the **union**(u,v) will concatenate the sets containing u and v.

Example of a set Operations

- Use linked list to show a set
- **Make-Set**(w):
- **Find-Set**(u): (will return w)
- **Union**(u,v):
Running Time of Set Operations

- The Make-Set and Find-Set will run in $O(1)$-time.
- How fast can we compute the union.
- Let us ask a different question. Let $N = \{1, \ldots, n\}$ be a set of n integers, and let $P = \{(u, v) \mid u$ and v in $N\}$ be a subset of pairs from $n \times n$.
- For $u = 1$ to n Make-Set(u);
 For every pair (u, v) in P
 If Find-Set(u) \neq Find-Set(v)
 Union(u, v)
- Question: How many times does the pointer for an element get redirected?

Union Operation

- Each merge of two sets might take linear number of pointer changes.
- We might have up $O(n^2)$ pointer changes.
- Let us keep a number associated with each set in its root, $\text{Rank}(u)$, which tell how many elements a set has.
- When merging two lists, always change the pointers in the list with smaller rank.
Union Operation

- Now each time a pointer changes its corresponding set doubles in the size.
- During the whole process the maximum set can become of size at most \(n \).
- For a specific pointer this happen at most \(\log n \) times,
 \[2^0, 2^1, 2^2, ..., 2^k = m, \text{ which means } k = \log n \]
- Over all \(n \) elements, this will result in an \(O(n \log n) \) number of pointer updates.

Kruskal’s MST Algorithm

- It is directly based on Generic MST.
- At each iteration, it finds a light edge, which is also safe, and adds it to an ever growing set, \(A \), which will eventually become the MST.
- During the course of algorithm, the structure generated by algorithm is a forest.

<table>
<thead>
<tr>
<th>Step</th>
<th>Description</th>
</tr>
</thead>
<tbody>
<tr>
<td>1.</td>
<td>(A \leftarrow \emptyset)</td>
</tr>
<tr>
<td>2.</td>
<td>for each (v \in V_G) do</td>
</tr>
<tr>
<td>3.</td>
<td>Make-Set((v))</td>
</tr>
<tr>
<td>4.</td>
<td>Sort Edges in (E_G)</td>
</tr>
<tr>
<td>5.</td>
<td>for each ((u, v)) in (E_G)</td>
</tr>
<tr>
<td>6.</td>
<td>if Find-Set((u)) (\neq) Find-Set((v))</td>
</tr>
<tr>
<td>7.</td>
<td>(A \leftarrow A \cup {(u, v)})</td>
</tr>
<tr>
<td>8.</td>
<td>Union((u, v))</td>
</tr>
<tr>
<td>9.</td>
<td>Return (A)</td>
</tr>
</tbody>
</table>
Running time of Kruskal’s Algorithm

- Step 1: $O(1)$
- Steps 2,3: $O(n)$
- Step 4: $O(m \log m)$
- Steps 5-8: $O(m \log n)$

1. $A \leftarrow \emptyset$
2. for each $v \in V_G$ do
3. Make - Set(v)
4. Sort Edges in E_G
5. for each $(u, v) \in E_G$
 (In order of increasing weights)
6. if Find - Set$(u) \neq$ Find - Set(v)
7. $A \leftarrow A \cup \{(u, v)\}$
8. Union(u, v)
9. Return A

Example
Example

![Graph Example Image]

Why Does the MST Work?

- Cuts in graphs: A cut $(S,V-S)$ of an undirected graph $G=(V,E)$ is a partition of V:
 - A **Cross edge** is an edge with one endpoint in S and the other in $V-S$.
 - We say a cut $(S,V-S)$ respects the set A if no edge of A is cross edge.
 - An edge is a **light edge** crossing the cut $(S,V-S)$ if it has the minimum weight among all crossing edges.
Correctness:

- Let $G=(V,E)$ be a connected undirected graph with real-valued weight function w defined on E. Let A be a subset of E that is included in some minimum spanning tree for G, let $(S,V-S)$ be any cut that respects A, and let (u,v) be a light edge crossing $(S,V-S)$. Then edge (u,v) is a safe edge for A.

![Diagram of a graph with a minimum spanning tree and a cut](image)

Prim’s MST Algorithm

- At each step the set A is one connected component.
- Start at an arbitrary vertex r (root of the tree).
- At each step adds a new vertex which is connected to A through a minimum weight edge.
- The growth starts at r and continue till all vertices are covered, each vertex u has a parent $p(u)$, which represents its parent in the tree.
- Also, each vertex u has a $key(u)$, which represents the cost of adding u to A at each point of algorithm.
Prim’s MST

- To implement the priority queue Q, we can use a binary heap.
- The steps 1-5 can be done in $O(n)$-time.
- Step 7 take $O(\log n)$-time.
- Step 11 can be implemented with decrease key which takes $O(\log n)$-time.
- Since there are at most $m=|E|$ elements in all $Adj[]$ list for all elements in Q, the the algorithm take $O(n \log n + m \log n) = O(m \log n)$.

Example

- **MST – Prim(G,W,r)**
 1. $Q \leftarrow V_g$
 2. For each $u \in Q$
 3. do $key[u] = \infty$
 4. $key[r] \leftarrow 0$
 5. $p(r) = \text{NIL}$
 6. While $Q \neq \emptyset$ do
 7. $u \leftarrow \text{Extract-Min}(Q)$
 8. For each $v \in Adj[u]$ do
 9. If $v \in Q$ and $w(u,v) < key[v]$
 10. then $p(v) \leftarrow u$
 11. $key[v] \leftarrow w(u,v)$
Example

11/6/2003
Dept. of Computer Science
Correctness

- The theorem 24.1 holds here.
 - At each step the cut is \((Q, V-Q)\).
 - Extract-min will return the light edge of the current cut.
 - The \(key[v]=w(u,v)\) will ensure that the cost of adding all new vertices in next iteration is up to date.
 - The algorithm stops after \(Q\) is empty, which happens after \(n\) iterations.