Selection Problems

Medians and Order Statistics
Order Statistics

- The i^{th} order statistic of a set of n numbers is the i^{th} smallest element in sorted sequence:

 \[A \]

 \[
 \begin{array}{cccccc}
 4 & 1 & 3 & 2 & 16 & 9 & 10 & 14 & 8 & 7 \\
 \end{array}
 \]

- Minimum or first order statistic: 1
- Maximum or n^{th} order statistic: 16
- Median or $(n/2)^{th}$ order statistic: 7 or 8
 (both are medians, happens when n is even!)

The Selection problem:

- Input: An array A of distinct numbers of size n, and a number i.
- Output: The element x in A that is larger than exactly $i-1$ other elements in A.

Finding maximum and minimum can be easily solved in linear time ($O(n)$).
(it’s actually $\Theta(n)$).
Trivial Solution:

- Sort the array A, and return the entry in i^{th} position:
 - Sorting A takes $O(n \log n)$.
 - The i^{th} entry can be returned in constant time.
- Worst case running time: $O(n \log n)$
- Can we do better?
 Comparing to maximum and minimum, the general i is taking a long time.

A Randomized Selection Algorithm (idea):

- Think about the properties of $\text{Partition}()$ algorithm:

<table>
<thead>
<tr>
<th><= x</th>
<th>x</th>
<th>>x</th>
</tr>
</thead>
<tbody>
<tr>
<td>p</td>
<td>q</td>
<td>r</td>
</tr>
</tbody>
</table>

- If $i=q$, then we have x as the i^{th} order statistic.
 (what if this not the case?)
A Randomized Selection Algorithm (idea):

- If \(i < q \), then we have look for the \(i \)th order statistic among first \(p-q+1 \) elements:

 \[
 \begin{array}{c}
 i \\
 \hline
 \leq x & x & \geq x \\
 \hline
 p & q & r
 \end{array}
 \]

- We can call \textbf{Partition()}, with parameters \((A,p,q)\)

A Randomized Selection Algorithm (idea):

- If \(i > q \), then we have look for \(i \)th order statistic among elements between \(q \) and \(r \):

 \[
 \begin{array}{c}
 i \\
 \hline
 \leq x & x & \geq x \\
 \hline
 p & q & r
 \end{array}
 \]

- We can call \textbf{Partition()}, with parameters \((A,q,r)\)
The Algorithm:

Randomized-Select(A, p, r, i)
 if $p = r$ then
 Return $A[p]$
 $q =$ Randomized-Partition(A, p, r)
 $k = q - p + 1$
 if $i \leq k$ then
 Randomized-Select(A, p, q, i)
 else
 Randomized-Select($A, q, r, i - k$)

Running time:

- The recurrence:
 - Lucky: $T(n) = T(9n/10) + \Theta(n) = \Theta(n)$
 Using master theorem:

 $\log_{10} 1
 \frac{n}{7} = n^0 = 1$

 - Unlucky: $T(n) = T(n - 1) + \Theta(n) = \Theta(n^2)$
 Worst than sorting!
Average Case:

- Assume **Partition**() Algorithm breaks A to two pieces with sizes k and $n-k-1$,

$$T(n) = \frac{1}{n} \sum_{k=0}^{n-1} T(\max(k, n-k-1)) + \Theta(n)$$

$$\leq \frac{2}{n} \sum_{k=\lfloor n/2 \rfloor}^{n-1} T(k) + \Theta(n)$$

- Assume $T(n) \leq cn$ for some c.

Average Case (cont’d.)

$$T(n) = \frac{2}{n} \sum_{k=\lfloor n/2 \rfloor}^{n-1} ck + \Theta(n)$$

$$= \frac{2c}{n} \left(\sum_{k=1}^{n-1} k - \sum_{k=1}^{\lfloor n/2 \rfloor} k \right) + \Theta(n)$$

$$= \frac{2c}{n} \left(\frac{n}{2} (n-1) - \frac{1}{2} \frac{n}{2} \left(\frac{n}{2} - 1 \right) \right) + \Theta(n)$$

$$= c(n-1) - \frac{c}{2} \left(\frac{n}{2} - 1 \right) + \Theta(n)$$

$$= cn - \left(\frac{cn}{4} + \frac{c}{2} - \Theta(n) \right)$$

$$\leq cn$$
Worst-case Linear-Time O.S.

Select(A, p, q, i) Algorithm:
1. Divide A to $n/5$ groups of size 5.
2. Find the median of each group of 5 by brute force, and store them in a set A' of size $n/5$.
3. Use Select($A', 1, n/5, n/10$) to find the median x of $n/5$ medians.
4. Partition the n elements around x. Let $k = q-p+1$ (rank of x).
5. if $i=k$ then
 return x
 if $i<k$ then Select(A, p, q, i)
 else Select($A, q, r, i-k$)

Analysis

- At least half of A' is less than x, which is at least $n/10$ elements of A'.
- Thus $3n/10$ elements are smaller than x.
- If $n>50$ then $3n/10>n/4$, so $n/4$ elements are smaller than x, and we know where they are!
- The components of recurrence for $T(n)$:
 - $T(n/5)$: to find median of $n/5$ medians,
 - $T(3n/4)$: the complexity of step 5.
 - $\Theta(n)$: The time for Partition$()$.
 - $T(n) = T(n/5) + T(3n/4) + \Theta(n)$
Analysis (cont’d.)

- **Claim:** \(T(n) = cn. \)

\[
T(n) = \frac{cn}{5} + \frac{3cn}{4} + \Theta(n) \\
\leq 19cn/20 + O(n) \\
= cn - (cn/20 - O(n)) \\
\leq cn, \text{ for large enough } c.
\]

Simplified Master Theorem:

- Assume that \(T(1) = d \), and for \(n > 1 \):

\[
T(n) = aT(n/b) + cn.
\]
- If \(a < b \), Then \(T(n) = O(n) \);
- If \(a = b \), Then \(T(n) = O(n \log n) \);
- If \(a > b \), Then \(T(n) = O(n^{\log_b a}) \);

\[\text{e.g. } T(n) = 4T(n/2) + cn \text{ gives } T(n) = O(n^{\log_2 4}) = O(n^2)\]
Today’s Lecture

- Binary Search Trees
- Balanced Search Trees

The Structure

- Each node x in a binary search tree (BST) contains:
 - $key[x]$ - The value stored at x.
 - $left[x]$ - Pointer to left child of x.
 - $right[x]$ - Pointer to right child of x.
 - $p[x]$ - Pointer to parent of x.
BST - Property

- Keys in BST satisfy the following properties:
 - Let \(x \) be a node in a BST:
 - If \(y \) is in the left subtree of \(x \) then:
 \[\text{key}[y] \leq \text{key}[x] \]
 - If \(y \) is in the right subtree of \(x \) then:
 \[\text{key}[y] > \text{key}[x] \]

Example:

- Two valid BST’s for the keys: 2,3,5,5,7,8.
In-Order Tree walk

- Can print keys in BST with in-order tree walk.
- Key of each node printed between keys in left and those in right subtrees.
- Prints elements in monotonically increasing order.
- Running time?

In-Order Traversal

Inorder-Tree-Walk(x)
1: If \(x\neq NIL \) then
2: Inorder-Tree-Walk(left[x])
3: Print(key[x])
4: Inorder-Tree-Walk(right[x])

What is the recurrence for \(T(n) \)?
What is the running time?
In-Order Traversal

- In-Order traversal can be thought of as a projection of BST nodes on an interval.
- At most 2^d nodes at level $d=0, 1, 2, \ldots$

Other Tree Walks

Preorder-Tree-Walk(x)
1: If $x \neq \text{NIL}$ then
2: Print($key[x]$)
3: Preorder-Tree-Walk($left[x]$)
4: Preorder-Tree-Walk($right[x]$)

Postorder-Tree-Walk(x)
1: If $x \neq \text{NIL}$ then
2: Postorder-Tree-Walk($left[x]$)
3: Postorder-Tree-Walk($right[x]$)
4: Print($key[x]$)
Searching in BST:

- To find element with key \(k \) in tree \(T \):
 - Compare \(k \) with \(\text{root}[T] \)
 - If \(k < \text{key}[\text{root}[T]] \) search for \(k \) in \(T \)
 - Otherwise, search for \(k \) in \(\text{Search}(T,k) \)

\[
\begin{align*}
\text{Search}(T,k) & \\
1: & \text{ } x = \text{root}[T] \\
2: & \text{ If } x = \text{NIL} \text{ then return(”not found”) } \\
3: & \text{ If } k = \text{key}[x] \text{ then return(”found the key”) } \\
4: & \text{ If } k < \text{key}[x] \text{ then Search(left[x],k) } \\
5: & \text{ else Search(right[x],k) }
\end{align*}
\]

Examples:

- Search(\(T,11 \))
- Search(\(T,6 \))
Analysis of Search

- Running time of height h is __________
- After insertion of n keys, worst case running time of search is __________

BST Insertion

- Basic idea: similar to search.
- BST-Insert:
 - Take an element z (whose right and left children are NIL) and insert it into T.
 - Find a place where z belongs, using code similar to that of Search.
 - Add z there.
Insert Key

BST-Insert(T, z)
1: $y = \text{NIL}$
2: $x = \text{root}[T]$
3: While $x \neq \text{NIL}$ do
4: $y = x$
5: if key[z] < key[x] then
6: $x = \text{left}[x]$
7: else $x = \text{right}[x]$
8: $p[z] = y$
9: if $y = \text{NIL}$ then $\text{root}[T] = z$
10: else if key[z] < key[y] then \text{left}[y] = z
11: else \text{right}[y] = z

Locating the Minimum

BST-Minimum(T)
1: $x = \text{root}[T]$
2: While $\text{left}[x] \neq \text{NIL}$ do
3: $x = \text{left}[x]$
4: return x
Application: Sorting

- Can use BST-Insert and Inorder-Tree-Walk to sort list of \(n \) numbers

BST-Sort
1: root[\(T \)] = NIL
2: for \(i = 1 \) to \(n \) do
3: \(\text{BST-Insert}(T, A[i]) \)
4: \(\text{Inorder-Tree-Walk}(T) \)

| Sort Input: 5, 10, 3, 5, 7, 5, 4, 8 |
| Inorder Walk: 3, 4, 5, 5, 7, 8, 10 |

Analysis:

- The running time depends on the height of the tree (the Insert time).
- The average case analysis is like quick sort (which element will sit in the root).
- Therefore the expected running time is \(O(n \log n) \).
- Average BST height is \(O(\log n) \).
Successor

Given x, find node with smallest key greater than $key[x]$. Here are two cases depending on right subtree of x.

- **Successor Case 1:**
 - The right subtree of x is not empty. Successor is leftmost node in right subtree. That is, we must return $BST\text{-Minimum}(right[x])$

```
BST-Successor(x)
1: If right[x]!=NIL then
2: return BST-Minimum(right[x])
3: y=p[x]
4: While (y!=NIL) and (x=right[y])
5: x=y
6: y=p[y]
7: return y
```

Successor Case 2: The right subtree of x is empty. Successor is lowest ancestor of x. Observe that, “Successor” is defined as the element encountered by **inorder** traversal.

```
BST-Successor(x)
1: If right[x]!=NIL then
2: return BST-Minimum(right[x])
3: y=p[x]
4: While (y!=NIL) and (x=right[y])
5: x=y
6: y=p[y]
7: return y
Running time?
```
Deletion

- Delete a node x from tree T:
 - Case 1: x has no children.

```
  A
 /\  \\
B  D
  \  /
   C
```

Deletion:

- Case 2: x has one child (call it y). Make $p[x]$ to replace y instead of x as its child, and make $p[x]$ to be $p[y]$.

```
  A
 /\  \\
B  D
  \  /
   C
```

```
  A
 /\  \\
B  D
  \
   C
```
Deletion:

- Case 3: \(x \) has two children:
 - Find its successor (or predecessor) \(y \).
 - Remove \(y \). (Note \(y \) has at most one child, why?)
 - Replace \(x \) by \(y \).

```
Delete Procedure

BSFT-Delete\( (T, z) \)
1: If \((\text{left}[z]=\text{NIL})\) or \((\text{right}[z]=\text{NIL})\) then
2: \( y = z \)
3: else \( y = \text{BST-Successor}(z) \)
4: If \( \text{left}[y] = \text{NIL} \) then
5: \( x = \text{left}[y] \)
6: else \( x = \text{right}[y] \)
7: If \( x = \text{NIL} \) then \( p[x] = p[y] \)
8: If \( p[y] = \text{NIL} \) then \( \text{root}[T] = x \)
9: else if \( y = \text{left}[p[y]] \) then \( \text{left}[p[y]] = x \)
10: else \( \text{right}[p[y]] = x \)
11: if \( y = \text{NIL} \) then \( \text{key}[z] = \text{key}[y] \)
12: return \( y \)
```