Shortest Paths

Finding the Shortest Paths in a graph arises in many different application:

- Transportation Problems: Finding the cheapest way to travel between two locations.
- Motion Planning: What is the most natural way to travel a robot in an environment.
- Communication Problems:
 - The shortest set of hubs to get a message between two nodes in a network.
 - Which two locations are farthest apart, i.e., what is the diameter of a network.
The Single Source Shortest Path

- We are given a graph \(G = (V,E) \) and a real weight function \(w \) from \(E \) to \(R \), define the weight of a path \(p = \langle v_0, v_1, \ldots, v_k \rangle \) as the sum of weight of its edges:
 \[
 w(p) = \sum_{i=1}^{k} w(v_{i-1}, v_i).
 \]

- We define the shortest-path weigh between \(u \) and \(v \) by:
 \[
 d(u,v) = \begin{cases}
 \min \{ w(p) : u \xrightarrow{p} v \} & \text{if there is a path between } u \text{ and } v \\
 \infty & \text{otherwise}
 \end{cases}
 \]

The Single Source Shortest Path

- Given a graph \(G = (V,E) \), we want to find a shortest path from a source “s” to every vertex \(v \) in \(V \).

- Variants:
 - Single destination shortest path.
 - Single pair shortest path.
 - All-pairs shortest path.

- We will make different assumptions about edge weights!
Uniqueness

Sub-optimality

- Given a weighted graph \(G=(V,E) \) and weight function \(w \) on edges. Let \(P=<v_1,v_2,\ldots,v_k> \) be a shortest path from \(v_1 \) to \(v_k \) and for any \(i \) and \(j \) such that \(1 \leq i \leq j \leq k \) let \(P_{ij}=<v_i,v_{i+1},\ldots,v_j> \) be the sub path of \(P \) from \(v_i \) to \(v_j \). Then, \(P_{ij} \) is the shortest path from \(v_i \) to \(v_j \).
Sub-optimality

Let $G=(V,E)$ be a weighted, directed graph with weight function w. Suppose that a shortest path P from source s to a vertex v can be decomposed into a path P' and an edge (u,v) as follows:

Then the weight of shortest path from s to v is

$$d(s, v) = d(s, u) + w(u, v)$$

Triangle Inequality

Let $G=(V,E)$ be a weighted, directed graph with weight function w. Then for all edges (u,v), we have

$$d(s, v) \leq d(s, u) + w(u, v)$$
Relaxation Techniques

- For a vertex v in V, we maintain an attribute $d[v]$, which is an upper bound on the shortest path from s to v. We call $d[v]$ a **shortest path estimate**.
- Initially, all the shortest path estimates are infinity.
- As algorithms proceed this values gets closer and closer to actual value $d(s, v)$ of shortest path between s and v.

Relaxation

- The process of relaxing an edge (u, v) consists of testing whether we can improve the shortest path found so far to u, by extending it to v.
- A relaxation step may decrease the of shortest path estimate $d[v]$ using the triangle inequality:

\[
\text{Relax}(u, v, w) \\
\text{if } d[v] > d[u] + w(u, v) \text{ then} \\
d[v] = d[u] + w(u, v) \\
\text{End}
\]
The Effect of relaxation

Properties of Relaxation

- Let $G=(V,E)$ be a weighted graph with weight function w. Then
 - Immediately after relaxing (u,v), we have $d[v] \leq d[u] + w(u,v)$
 - For every vertex v in G: $d[v] \geq d(s,v)$
 - If there is no path in G between s and v:
 $d[v] = d(s,v) = \infty$
 - Let $p=<s,...,u,v>$ be the shortest path between s and v. If $d[u]=d(s,u)$ at any time prior to relaxation of (u,v) then $d[v]=d(s,v)$ after the relaxation.
Bellman-Ford Algorithm

- This is the most basic single-source shortest path algorithm:
 - The algorithm finds the shortest path from source s to every vertex v in the graph.
 - The actual shortest path can be constructed easily.
 - Starts with an estimate of shortest distance and eventually converges to shortest weight paths.

Algorithm

```plaintext
SSSP(G)
   for each $v \in V$ do
      $d[v] = \infty$
      $d[s] = 0$
   for $i = 1$ to $|V| - 1$ do
      for each edge $(u, v) \in E$ do
         if $d[v] > d[u] + w(u, v)$ then
            $d[v] = d[u] + w(u, v)$
      for each edge $(u, v) \in E$ do
         if $d[v] > d[u] + w(u, v)$ then
            Output "NoSolution!"

- Initialize $d[ ]$ to infinity, which will converge to shortest-path value.
- Relaxation: will relax each edge $|V| - 1$ times.
- At the end, test to see if a solution is found (gets solution if no negative-weight cycles exits.)
```
Well-definedness

- If the graph contains a negative cycle then some shortest path may not exist. Consider the following example, as we go around the cycle we always get shorter path.

```
\[ v_I \rightarrow v_i \rightarrow v_k \]
```

Example

- Initialization:
 \[d[A] = 0 \]
 \[d[B] = d[C] = d[D] = d[E] = \infty \]

```
A
  4 /     \ 3     1     2
  \  \     /     /     /  \\
  C -------------- D
  0             4
```

- 1st Relaxation: Process edges in order \((A,B), (A,C), (B,C), (B,D), (D,C), (E,D), (B,E)\).

```
A
  4 /     \ 3     1     2
  \  \     /     /     /  \\
  C -------------- D
  0             4
```

```
A
  4 /     \ 3     1     2
  \  \     /     /     /  \\
  C -------------- D
  0             4
```
Example

- 2st Relaxation: Same order of process for edges, i.e. (A,B), (A,C), (B,C), (B,D), (D,C), (E,D), (B,E). (there are 3 more relations but the $d[]$ values will not change).

Running time and Correctness

- Running time: $O(nm)$, where $n=|V|$ and $m=|E|$.
- After $|V|-1$ iteration the $d[v]$ represent the shortest path between s and each vertex v:
 - Initially: $d[s]=0$
 - Let $s \rightarrow v_1 \rightarrow v_2 \rightarrow \ldots \rightarrow v_k$ denote the shortest path between s and v_k then:
 - After 1st path $d[v_1]$ is correct, since $d[v_1] = d[s]+w(s,v_j)$.
 - After 2nd path $d[v_2]$ is correct, since $d[v_2] = d[v_1]+w(v_j,v_2)$.
 - ... After kth path $d[v_k]$ is correct, since $d[v_k] = d[v_{k-1}]+w(v_{k-1},v_k)$.
 - This holds for all vertices, since the longest path in the graph has length $|V|-1$.
Dijkstra’s Algorithm

- This algorithm works only for the graphs with non-negative edge weights.
- The result of this algorithm is similar to BFS if the graph is unweighted.
- Like Prim’s algorithm uses a priority queue.
- Has better running time than Bellman-Ford.

Algorithm

```
SSSP(G)
    for each v ∈ V do
        d[v] = ∞
    d[s] = 0
    S = ∅
    Q = V
    while Q ≠ ∅ do
        u = Extract - Min(Q)
        S = S ∪ {u}
        for each v ∈ Adj[u] do
            if d[v] > d[u] + w(u, v) then
                d[v] = d[u] + w(u, v)
```

- Initialize of $d[\cdot]$ is similar to Bellman-Ford.
- Relaxation: each vertex can be subject to relaxation as many times as its in-degree.
- The changes due to relaxation will be handled by Decrease-Key algorithm.
Example

Q:

Extract-Min: A
Decrease-Key: B, C

Q:

Extract-Min: C
Decrease-Key: B, D

Q:

Extract-Min: D
Decrease-Key: B
Example

Running Time

- Extract-Min: will be executed $|V|$ times.
- Decrease-Key: will be executed $|E|$ times.

$$T(n,m) = O(n \log n + m \log n)$$
Correctness

At the termination of algorithm \(d[u] = d(s,u)\).
Assume not, i.e. \(d[u] \neq d(s,u)\). Right before \(u\) is added to \(S\).
Let \(p\) be the shortest path between bewteen \(s\) and \(u\). Let \(y\) be the first vertex on \(p\) outside \(S\) and let \(x\) be the vertex on \(p\) right before \(y\). Clearly when \(u\) is inserted to \(S\), \(d[y] = d(s,y)\).
But this will result in a contradiction.
\[
d[y] = d(s,y) \\
\leq d(s,u) \\
\leq d[u]
\]

Shortest Path in DAGs

- SSSP is well defined for DAGs, since DAGs can not have negative cycles.
- We are looking for a fast algorithm (as opposed to Dijkstra's and Bellman-Ford).
- Observe that, if there is a path from \(u\) to \(v\), then \(u\) precedes \(v\) in topological sort. Which means to find the SSSP we can just pass once over the vertices in the topologically sorted ordered.
Algorithm

DAG-Shortest-Path(G, w, s)

- **Topologically Sort** the vertices of G
- **Initialize** the $d[]$ for all the vertices.
- **For** each vertex u taken in topologically sorted order **do**
 - **For** each vertex v in $Adj[u]$ **do**
 - **Relax**(u,v,w)

Example

![Diagram of a directed acyclic graph with weights and shortest paths](image-url)
Example

Example
Example

Running Time

DAG-Shortest-Path(G, w, s)

- Topologically Sort the vertices of G
- Initialize the $d[]$ for all the vertices.
- For each vertex u taken in topologically sorted order do
 - For each vertex v in $Adj[u]$ do
 - Relax(u,v,w)

- Since every vertex will be looked at at most once, the outer loop will be executed $O(|V|)$ times.
- The inner loop will be executed only $O(|E|)$ times.
- The overall running time is $O(|V|+|E|)$.