Today’s Lecture

- String Matching
 - Notations and Terminology
 - Naive String Matching Algorithm
 - The Rabin-Karp Algorithm
 - Knuth-Morris-Pratt Algorithm
Problem Formulation

- String and Pattern Matching problems are fundamental to any application involving text processing.
- We are given a text \(T[1,\ldots,n] \) (\(n \) characters) and a pattern \(P[1,\ldots,m] \), the problem is to find all occurrences of \(P \) in \(T \).
- We say \(P \) occurs with shift \(s \) in \(T \) (or equivalently, \(P \) occurs at position \(s+1 \) in text \(T \)) if:
 \[
 0 \leq s \leq n - m \quad \text{and} \quad T[s+1\ldots s+m] = P[1\ldots m]
 \]

Notations

- We let \(A \) denote the alphabet and \(A^* \) denote the set of all finite-length strings using the characters in \(A \).
- \(\varepsilon \) will denote the empty string. \(|x| \) will denote the length of string \(x \). The concatenation of strings \(x \) and \(y \) will be denoted by \(xy \).
- We say \(w \) is a prefix (suffix) of string \(x \) if \(x=wy \) (\(x=yw \)) for some string \(y \) in \(A^* \).
- We will denote the \(k \)-character prefix \(P[1,\ldots,k] \) of \(P[1,\ldots,m] \) by \(P_k \). (what is \(P_0 \)?)
Simple Lemma

- Suppose x, y and z are strings and x and y are both suffixes of z. If $|x| \geq |y|$ then x is a suffix of y; if $|y| \geq |x|$, then y is a suffix of x, and if $|y| = |x|$ then $x = y$.

Naive Algorithm for String Matching

- The naive algorithm finds all valid shifts using a loop that checks if P_m is suffix of T_{s+m} for each of $n-m+1$ possible values of s.

For $s \leftarrow 0$ to $n-m$ do

- If $P[1,\ldots,m] = T[s+1,\ldots,s+m]$ Then
 - Write ("Match at position s")
<table>
<thead>
<tr>
<th>Running Time</th>
</tr>
</thead>
</table>

- The total running time: $O(m(n-m))$. For example, the worst case happens when we try to find $P=a^m$ (string of m ‘a’) in $T=a^n$.
- We want to have an algorithm which has a linear running time in terms of n and m, more precisely an $O(n+m)$ algorithm.

<table>
<thead>
<tr>
<th>Rabin-Karp Algorithm</th>
</tr>
</thead>
</table>

- The Rabin-Karp algorithm interprets the symbols of the alphabet, A, as numbers and considers the strings T and P as numbers to the base $d=|A|$.
- Let p be the number corresponding to $P[1,...,m]$ and t_s be the number corresponding to $T[s+1,...,s+m]$.
- Let us assume for simplicity $d=10$. Our first task is to compute the numbers p and t_s.
Horner’s Rule

- We can compute p in time $O(m)$:
 \[p = P[m] + 10(P[m-1] + 10(P[m-2] + \cdots + 10(P[2] + 10P[1]) \cdots) \]

- The value of t_0 can be similarly computed from $T[1, \ldots, m]$ in $O(m)$ time. We need to compute the values $t_1, t_2, \ldots, t_{n-m}$, in $O(n-m)$ time.

- For this we will use the following recursive relation:
 \[t_{s+1} = 10(t_s - 10^{m-1}T[s+1]) + T[s+m+1] \]

Algorithm

- Once we have computed the values for p and t_0, \ldots, t_{n-m}, in time $O(n+m)$, we can compare them to find all the occurrences of $P[1, \ldots, m]$ in $T[1, \ldots, n]$.

- But this is only based on the assumption that all the numbers $(p, t_0, \ldots, t_{n-m})$ can be represented in a word, which might not be true!

- In stead of working with these numbers we compute their reminder mod a prime q, which will fit in a word.
Example

\[2 \ 3 \ 5 \ 9 \ 0 \ 2 \ 3 \ 1 \ 4 \ 1 \ 5 \ 2 \ 6 \ldots \]

\[31415 \mod 13 \]

\[7 \]

\[3 \ 1 \ 4 \ 1 \ 5 \ 2 \]

\[7 \ 8 \]

\[14152 = (41415 - 3 \times 10000) \times 10 + 2 \pmod{13} \]

\[(7 - 3 \times 3) \times 10 + 2 \pmod{13} \]

\[8 \pmod{13} \]

Spurious Hit

- It may be the case that \(t_s = p \pmod{q} \) but \(T[s+1, \ldots, s+m] \) is not the equal to \(P[l, \ldots, m] \). This is called a spurious hit. In this case we will need to explicitly compare \(P[l, \ldots, m] \) and \(T[s+1, \ldots, s+m] \), which takes \(O(m) \) time. Hence the worst case running time of this algorithm is \(O((n-m)m) \).
The expected Running Time

- In practice, if there are few matches, we will expect big savings (from this algorithm compared to naïve algorithm).
- If we assume that reducing \(\text{Mod } q \) is like a random mapping from \(\mathbb{A}^m \) to \(\mathbb{Z}_p \) (set of numbers from \(0, \ldots, q-1 \)), i.e. \(\{0, \ldots, q-1\} \), then the expected number of spurious hits is \(O((n-m)/q) \).
- If we denote number of matches between \(P \) and \(T \) by \(v \), then the over all running time is \(O(n) + O(m(v+(n-m)/q)) \).

Knuth-Morris-Pratt (KMP) Algorithm

- This algorithm runs in time liner time in terms of sum of the lengths, \(n+m \).
- The key to this running time is the use of an auxiliary function, called prefix function, which computed based on string \(P \).
- The idea is to avoid many backtrackings which occur in previous two algorithms. Instead of moving the pattern one position at a time, we will use the partial information obtained in previous trials to slid the pattern \(P \) more than one position to right, without bypassing potential matches.
Example

Suppose we are matching P with $T[6,\ldots,16]$:
- There is a mismatch between $P[11]$ and $T[16]$.
- We can slide our match to $T[13]$, why?

Because!

- We know the matching stopped at position $P[10]$, i.e. $T[5,\ldots,15]$ has been matched to $P[1,\ldots,10]$. Let us look at string $P[1,\ldots,10]$.

The longest prefix of this string that appears also as suffix in it is “ABA”, so the last three position of P_{10} are the same as its first three position.

Since the last three position of P are the same as $T[13,\ldots,15]$, by transitivity first three characters of P are the same as $T[13,\ldots,15]$.

Example

In General

- The amount of shift to which we slide P to depends only on structure of P and how much of P has been matched to T.
- Assume that q symbols of P has been already matched to $T[s+1,...,s+q]$, and there is a mismatch between $T[s+q+1]$ and $P[q+1]$, the question is how much can we slid in our algorithm.
Assume that q symbols of P has are already matched, to answer our previous question we need to know the longest proper suffix of $P[1,\ldots,q]$ which is a prefix of $P[1,\ldots,q]$.

We call this quantity π and define it as:

$p(q) = \max\{k : k < q \text{ and } P[1,\ldots,k] = P[q-k+1,\ldots,q]\}$

Example

<table>
<thead>
<tr>
<th></th>
<th>1</th>
<th>2</th>
<th>3</th>
<th>4</th>
<th>5</th>
<th>6</th>
<th>7</th>
<th>8</th>
<th>9</th>
<th>10</th>
<th>11</th>
</tr>
</thead>
<tbody>
<tr>
<td>P</td>
<td>A</td>
<td>B</td>
<td>A</td>
<td>B</td>
<td>B</td>
<td>A</td>
<td>B</td>
<td>A</td>
<td>B</td>
<td>A</td>
<td>A</td>
</tr>
<tr>
<td>p</td>
<td>0</td>
<td>0</td>
<td>1</td>
<td>2</td>
<td>0</td>
<td>1</td>
<td>2</td>
<td>3</td>
<td>4</td>
<td>3</td>
<td>1</td>
</tr>
</tbody>
</table>
KMP Algorithm

KMP - Matcher(T, P)

q ← 0; i ← 0;
Repeat /* Assume P[1…q] = T[i-q…i-1]*/
{ If p[q+1] = T[i] Then {
 q ← q + 1; i ← i + 1;
 If q = m Then /* Write "match at:":*/
 q ← p(q)
}
Else /* Mismatch */
{ If q = 0 Then i ← i + 1
Else q ← p(q)
}
} Until (i = n + 1)

Running Time of KMP

- The running time of this algorithm is \(O(n) \) assuming that the repeat loop will run in \(O(1) \).
- At each iteration of the algorithm either the value of \(i \) increases by one or the \(P \) slides to the right, but either of this can happen at most \(n \) times.
- Our major assumption is that the value of \(p(q) \) is computed off-line and is present when the algorithm is executing its main loop. Having an \(O(m) \) time algorithm to compute \(p(q) \) for all values of \(q \) between 1 and \(n \), will give us the desired running time of \(O(n+m) \).
Computing π

- We know $p[1]$ is always zero.
- Suppose we have computed $p[1]$ to $p[i-1]$ and we want to compute $p[i]$:
 - We know that $P[1,\ldots,p[i-1]]$ is the longest proper prefix that is also a suffix of $P[1,\ldots,i-1]$.
 - Let $q = p[i-1]$. If $P[i] = P[q+1]$, then we know $p[i] = q + 1$

```
Computing $\pi$

- If $P[i]$ is not equal to $P[q+1]$:  
  - We know that next longest prefix of $P[1\ldots i-1]$ which is also a suffix of it is $P[1,\ldots,p[q]]$ (why?).  
  - In this case we compare the value of $P[p[q]+1]$ with $P[i]$ and if they are equal then we will set $p[i] = p[q] + 1$
  - Otherwise, we will repeat this process.
```
Example

<table>
<thead>
<tr>
<th></th>
<th>1</th>
<th>2</th>
<th>3</th>
<th>4</th>
<th>5</th>
<th>6</th>
<th>7</th>
<th>8</th>
<th>9</th>
<th>10</th>
<th>11</th>
</tr>
</thead>
<tbody>
<tr>
<td>P</td>
<td>A</td>
<td>B</td>
<td>A</td>
<td>B</td>
<td>B</td>
<td>A</td>
<td>B</td>
<td>A</td>
<td>B</td>
<td>A</td>
<td>A</td>
</tr>
<tr>
<td>p</td>
<td>0</td>
<td>0</td>
<td>1</td>
<td>2</td>
<td>0</td>
<td>1</td>
<td>2</td>
<td>3</td>
<td>4</td>
<td>?</td>
<td></td>
</tr>
</tbody>
</table>

Suppose we want to compute p[10]
- We are given p[1] to p[9]. We set q = p[9].
- Since P[10] is not equal to P[5], we will set q = p[q], that is q = p[4] = 2.

Algorithm

p - Function(P)

\[
\begin{aligned}
p & \leftarrow 0; \quad q \leftarrow 0; \quad i \leftarrow 0; \\
\text{Repeat} & \quad \text{/* Assume p[1…i – 1] is known */} \\
\{ & \text{If } p[q + 1] = P[i] \text{ Then } \\
& \quad q \leftarrow q + 1; \quad i \leftarrow i + 1; \quad p[i] \leftarrow q; \}
\text{Else} & \quad \text{/* Mismatch */} \\
\{ & \text{If } q = 0 \text{ Then} \\
& \quad p[i] \leftarrow 0; i \leftarrow i + 1; \}
\text{Else } & q \leftarrow p(q) \\
\} & \text{Until } (i = m + 1)
\end{aligned}
\]
Running Time

- The algorithm is very similar to KMP algorithm in the sense that in each iteration either the i will be increased by one or the string will slide to the right, and this can happen at most $O(m)$ times.
- The main loop of the algorithm will take $O(1)$ time on each iteration, which implies the running time of algorithm is $O(m)$.