Flow Networks

- Used to model flow of
 - Liquids/gases though pipes
 - Parts though assembly lines
 - Current through electrical networks
 - Information through communication networks,
 - etc.
Flow Networks & Maximum Flow Problem:
- Edges: represent “conduits” with a stated capacity (weight) capacity: maximum rate at which the “material” (water, gas, electricity, bits, etc.) can flow through the conduit (e.g., 200 gallons/hour)
- Vertices: represent conduit junctions, material flows through vertices without collecting in them (except for the sink and source vertices)

Maximum Flow Problem: finding the maximum rate at which material can be shipped from the source to sink without violating any capacity constraints
Illustrative Example

- A company has a factory in a city \((s) \) and a warehouse in another city \((t) \), the product is manufactured in \(s \) and stocked in \(t \).
- The company leases space on trucks from another firm to ship the product from the factory to the warehouse.
 - Trucks travel over specified routes between cities and have limited capacity.
 - The truck company can ship at most \(c(u,v) \) product units per day between each pair of cities \(u \) and \(v \).
- Determine the largest rate \(p \) of product units that can be shipped.

Illustrative Example

- Every day, \(p \) product units leave the factory and \(p \) product units arrive at the warehouse.
 - The number of days needed to move \(p \) products from \(s \) to \(t \) is not relevant.
- Steady state: the rate at which units enter an intermediate city in the shipping network must equal the rate at which they leave (flow conservation).
- A Maximum flow in the network determines the maximum number \(p \) of product units per day that can be shipped.
Flow Networks

- A flow network $G = (V, E)$ is a directed graph in which each edge $(u, v) \in E$ has a nonnegative capacity $c(u, v) \geq 0$
 - If $(u, v) \notin E$, we assume $c(u, v) = 0$
- A flow network has two special vertices: the source, denoted s, and the sink, denoted t.
 - Every vertex lies in some path from the source to sink
 - The graph is connected and $|E| \geq |V| - 1$

Constraints

- Let $G = (V, E)$ be a flow network with an implied capacity function c. Let s and t be the source and sink, respectively. A flow in G is a real valued function f: $V \times V \rightarrow \mathbb{R}$ that satisfies the following properties:
 - **Capacity constraints**: For all $u, v \in V$, we require $f(u, v) \leq c(u, v)$
 - **Skew symmetry**: For all $u, v \in V$, we require $f(u, v) = -f(v, u)$
 - The net flow from a vertex u to a vertex v is the negative of the net flow in the reverse direction
 - The capacity of a vertex to itself is 0: $f(u, u) = -f(u, u) \Rightarrow f(u, u) = 0$
 - **Flow Conservation**: For all $u \in V - \{s, t\}$, we require
 $$\sum_{v \in V} f(u, v) = 0; \text{ the total net flow out of a vertex is 0}$$
Networks with Multiple Sources and Sinks

- Can be converted to a flow network with 1 source and 1 sink

Net Flow

- net flow/capacity
 - $f(u,v)$: net flow from vertex u to vertex v can be positive or negative
- **Skew symmetry**: For all $u,v \in V$, we require $f(u,v) = -f(v,u)$. By skew symmetry, flow conservation can be re-stated as:
 - the total net flow into a vertex (other than source or sink) is 0

<table>
<thead>
<tr>
<th>Vertex</th>
<th>Net Flow Out</th>
<th>Net Flow In</th>
</tr>
</thead>
<tbody>
<tr>
<td>v_2</td>
<td>$\sum_{v \in V} f(v_2, v) = 15 - 7 - 4 - 12 = 0$</td>
<td>$\sum_{v \in V} f(v, v_2) = -15 + 7 + 4 + 12 = 0$</td>
</tr>
</tbody>
</table>
Net Flow
- net flow/capacity
 - The value of a flow f is defined as the total net flow out of the source.
 \[|f| = \sum_{v \in V} f(s, v) \]

Maximum Flow Problem
- Given a flow network G with source s and sink t, find a flow of maximum value from s to t.

\[\text{maximize } |f| = \sum_{v \in V} f(s, v) \]
Observation

- There can be no net flow between u and v if there is no edge between them
 - If $(u, v) \notin E$ and $(v, u) \notin E$ then $c(u, v) = c(v, u) = 0$

- By capacity constraint:
 - $f(u, v) \leq c(u, v), f(u, v) \leq 0$
 - $f(v, u) \leq c(v, u), f(v, u) \leq 0$

- By skew symmetry:
 - $f(u, v) = -f(v, u) \Rightarrow f(u, v) = -f(v, u) = 0$

- Thus, **nonzero** net flow from vertex v to vertex u implies that $(u, v) \in E$ or $(v, u) \in E$ (or both)

Positive Net Flow

- The positive net flow *entering* a vertex v is defined by
 $$\sum_{u \in V \atop f(u, v) > 0} f(u, v)$$

- The positive net flow *leaving* a vertex is defined symmetrically.

- Interpretation of flow conservation property:
 - the positive net flow entering a vertex other than the source or sink must equal the positive net flow leaving the vertex
Positive Net Flows

- net flow/capacity

Convention for representing net flows: show only positive net flows, since they represent actual “shipments”: positive flows in one direction only (actual “shipments” are made in one direction only)

Cancellation

- Net flow between v_1 and v_3:
 - Flow from v_1 to v_3: $f(v_1, v_3) = 8 - 3 = 5$
 - Flow from v_3 to v_1: $f(v_3, v_1) = 3 - 8 = -5$
- Net flow is from v_1 to v_3: 5 actual “shipments” from v_1 to v_3
- By canceling flow in opposite directions, we can represent positive flows in one direction only (actual “shipments” are made in one direction only)

Cancellation

- allows to represent the shipments between two cities by a **positive net flow along at most one of the edges** between the corresponding vertices
 - if there is a zero or negative net flow from one vertex to another, no shipments need to be made in that direction
Identities Involving Flows

- Let $G=(V, E)$ be a flow network, and let f be a flow in G.

- For $X \subseteq V$, $f(X, X) = 0$. (flow of a vertex to itself is 0)

- For $X, Y \subseteq V$, $f(X, Y) = -f(Y, X)$. (skew symmetry constraint)

- For $X, Y, Z \subseteq V$ with $X \cap Y = \emptyset$

 $f(X \cup Y, Z) = f(X, Z) + f(Y, Z)$

 and

 $f(Z, X \cup Y) = f(Z, X) + f(Z, Y)$
Flow Value

- \(|f| = f(s, V) \)
- \(= f(V, V) - f(V-s, V) \)
- \(= f(V, V-s) \)
- \(= f(V, t) + f(V, V-s-t) \)
- thus, \(|f| = f(s, V) = f(V, t) \)

by flow conservation:

\[f(u, V) = 0 \text{ for all } u \in V \setminus \{s, t\} \]

Solving the Maximum Flow Problem

- The Ford-Fulkerson iterative method
 - Starts with \(f(u, v) = 0 \) for all \(u, v \in V \)
 - gives an initial flow of value zero
 - At each iteration, increases the flow value by finding an augmenting path
 - \textit{augmenting path}: a path from the source \(s \) to the sink \(t \) along which we can push more flow
 - flow is augmented along this path
 - repeat until no augmenting path can be found
- \textit{The max-flow min-cut theorem will show that upon termination, this method yields the maximum flow}
Ford-Fulkerson Method

Ford-Fulkerson-Method\((G,s,t)\)

Initialize flow \(f\) to 0

While there exists an augmenting path \(p\)

do augment flow along \(p\)

return \(f\)

Relies on three important concepts:

- Residual Networks
- Augmenting Paths
- Cuts

Residual Networks

- Given a flow network and a flow, the residual network consists of edges that can admit more flow.

- Let \(G=(V, E)\) be a flow network, with source \(s\) and sink \(t\). Let \(f\) be a flow in \(G\), and consider a pair of vertices \(u,v \in V\)

- the amount of additional net flow we can push from \(u\) to \(v\) before exceeding the capacity \(c(u,v)\) is the residual capacity of \((u,v)\) given by \(c_f(u,v)=c(u,v) - f(u,v)\)

\[
\begin{align*}
\text{(u)} & \quad c(u,v) = 16 \\
\text{(v)} & \quad f(u,v) = 11 \quad \Rightarrow \quad c_f(u,v) = 5
\end{align*}
\]
Residual Capacity

- When the net flow $f(u,v)$ is negative, the residual capacity $c_f(u,v)$ is greater than the capacity $c(u,v)$.

\[c(u,v) = 16 \]
\[f(u,v) = -4 \]
\[c_f(u,v) = c(u,v) - f(u,v) = 16 - 4 = 20 \]

- Interpretation of residual capacity on edge:
 - Net flow of 4 units from v to u. Can be cancelled by pushing a net flow of 4 units from u to v.
 - Another 16 units can be pushed from u to v before violating the capacity constraint on edge (u,v).

Residual Networks

- Given a flow network $G = (V, E)$ and a flow f, the residual network of G induced by f is $G_f = (V, E_f)$, where
 \[E_f = \{(u,v) \in V \times V : c_f(u,v) > 0\} \]

- Each residual edge can admit a strictly positive net flow.
Residual Network: Example

Flow network with flow f

Residual edges between vertices s and v_1

(u,v) may be a residual edge in E_f even if it was not an edge in E
(capacity is zero in this case)
Relating a Flow in G with a Flow in G_f

- Let $G=(V, E)$ be a flow network, with source s and sink t, and let f be a flow in G. Let G_f be the residual network of G induced by f, and let f' be a flow in G_f. Then, the flow sum $f + f'$ is a flow in G with value $|f + f'| = |f| + |f'|$.

- We must verify that skew symmetry, capacity constraints and flow conservation are obeyed by $f + f'$ in G.

- **Skew symmetry**

 for all $u, v \in V$

 \[
 (f + f')(u, v) = f(u, v) + f'(u, v) \\
 = - f(v, u) - f'(v, u) \\
 = - (f(v, u) + f'(v, u)) = -(f + f')(v, u)
 \]

- **Capacity constraints**

 - By definition, $f'(u, v) \leq c_f(u, v)$ for all $u, v \in V$ i.e., net flow in residual edge \leq capacity of residual edge

 - \[(f + f')(u, v) = f(u, v) + f'(u, v) \]

 \[
 \leq f(u, v) + c_f(u, v) \\
 = f(u, v) + (c(u, v) - f(u, v)) \\
 = c(u, v)
 \]

 i.e., resulting total flow \leq capacity

 Definition of $c_f(u, v)$
Relating a Flow in G with a Flow in G_f

- **Flow conservation:**
 for all $u \in V - \{s, t\}$:

 \[
 |f + f'| = \sum_{v \in V} (f + f')(s, v)
 = \sum_{v \in V} (f(s, v) + f'(s, v))
 = \sum_{v \in V} f(s, v) + \sum_{v \in V} f'(s, v)
 = |f| + |f'|
 \]

Finally, we need to show that the flow sum $f + f'$ is a flow in G with value $|f + f'| = |f| + |f'|$

\[
|f + f'| = \sum_{v \in V} (f + f')(s, v)
= \sum_{v \in V} f(s, v) + \sum_{v \in V} f'(s, v)
= \sum_{v \in V} f(s, v) + \sum_{v \in V} f'(s, v)
= |f| + |f'|
\]
Augmenting Paths

- Given a flow network $G = (V, E)$ and a flow f, an augmenting path p is a simple path from s to t in the residual network G_f.
- By the definition of the residual network, each edge (u,v) on an augmenting path admits some additional positive net flow from u to v without violating the capacity constraint on the edge.

Residual Capacity of Augmenting Path

- The residual capacity of an augmenting path p is the maximum amount of net flow that we can ship along the edges of p.

$$c_f(p) = \min \{ c_f(u,v) : (u,v) \text{ is on } p \}$$

Residual capacity of augmenting path p is $C_f(v,v2) = 4$.
Ford-Fulkerson Method

- **Ford-Fulkerson-Method** \((G,s,t)\)
 - Initialize flow \(f\) to 0
 - while there exists an augmenting path \(p\)
 - do augment flow along \(p\)
 - return \(f\)

- Repeatedly augments the flow along augmenting paths until a maximum flow has been found
- The max-flow min-cut theorem tells us that a flow is maximum if and only if its residual network contains no augmenting paths proof needs notion of cut (of a flow network)

Cuts of Flow Networks

- A cut \((S,T)\) of flow network \(G = (V,E)\) is a partition of \(V\) into \(S\) and \(T=V\setminus S\) such that \(s \in S\) and \(t \in T\).
- If \(f\) is a flow, then the net flow across the cut \((S,T)\) is defined to be \(f(S,T)\). The capacity of the cut \((S,T)\) is \(c(S,T)\).

Net flow across cut:

\[
f(S,T) = f(v_1,v_2) + f(v_3,v_2) + f(v_3,v_4)
\]

\[
= 12 + (-4) + 11 = 19
\]

Capacity of the cut:

\[
c(S,T) = c(v_1,v_2) + c(v_3,v_2) + c(v_3,v_4)
\]

\[
= 12 + 0 + 14 = 26
\]
Net Flow Across a Cut

- The value of a flow in a network \(G = (V, E) \), \(|f|\), is the net flow across any cut \((S, T)\) of the network, denoted \(f(S, T)\).

- \(f(S, T) = f(S, V) - f(S, S) \)

 - \(f(S, V) = f(S, V) + f(S-s, V) \)

 - \(f(s, V) \)

 - \(|f| \)

\[f(u, V) = 0 \text{ for all } u \in V-\{s, t\} \text{ -- flow conservation} \]

Cut Capacities Bound the Value of a Flow

- The value of a flow \(f \) in a network \(G = (V, E) \) is upper bounded by the capacity of any cut of \(G \).

\[
|f| = \sum_{u \in S} \sum_{v \in T} f(u, v)
\leq \sum_{u \in S} \sum_{v \in T} c(u, v)
= c(S, T)
\]
Max-Flow Min-Cut Theorem

- If \(f \) is a flow in a flow network \(G = (V, E) \) with source \(s \) and sink \(t \), then the following conditions are equivalent:

 1. \(f \) is a maximum flow in \(G \)
 2. The residual network \(G_f \) contains no augmenting path
 3. \(|f| = c(S, T) \) for some cut \((S, T)\) of \(G \). (There is a cut for which the net flow is equal to the capacity of the cut)

Max-Flow Min-Cut Theorem

- (1) \(\Rightarrow \) (2) (by contradiction): Suppose that \(f \) is a maximum flow in \(G \) but that \(G_f \) has an augmenting path \(p \). Then the flow sum \(f + f_p \) is a flow in \(G \) with value strictly greater than \(|f| \), contradicting the assumption.

- (2) \(\Rightarrow \) (3) Suppose that \(G_f \) has no augmenting path (i.e., no path from \(s \) to \(t \)). Define a cut such that all vertices is \(S \) have a path from \(s \) in \(G_f \), and \(T = V - S \). (Note that this is indeed a cut, since \(t \) is not in \(S \), or we would have an augmenting path.) If \(u \in S \) and \(v \in T \), we have \(f(u, v) = c(u, v) \) (or else \((u, v) \in E_f \) and \(v \) is in set \(S \)). Therefore \(|f| = f(S, T) = c(S, T) \)

- (3) \(\Rightarrow \) (1): \(|f| \leq c(S, T) \) for all cuts \((S, T)\).
 - Thus \(|f| = c(S, T) \Rightarrow f \) is a maximum flow.
Example

\[|\mathcal{F}| = 0 \]

\[|\mathcal{F}| = 12 \]

\[c(\mathcal{F}) = 12 \]

Example

\[|\mathcal{F}| = 16 \]

\[c(\mathcal{F}) = 4 \]
Example

\[|f| = 16 \]

\[|f| = 23 \]

\[\text{max flow was found: } |f| = 23 \]

\[\text{Cut Capacity: } 12 + 7 + 4 = 23 \]
Ford-Fulkerson Algorithm: Time Complexity

- The running time of the Ford-Fulkerson algorithm depends on how the augmenting path p is determined.
- If the augmenting path is chosen using a breadth-first search (Edmonds-Karp), it can be shown that the number of iterations performed by the algorithm is at most $O(VE)$.
- Each iteration takes $O(E)$ time.
- Total running time: $O(VE^2)$