Approximation Algorithms

Department of Mathematics and Computer Science
Drexel University

What is going to happen in this course?

- **What I would do for you:**
 - **Positive results:** we will review well-known approximation algorithms for various optimization problems.
 - **Negative results:** we will identify the level of hardness for approximating the solution to some of the optimization problems.

- **What You would do for me:**
 - **A project:** (Nirav will tell you about it).
 - **Homeworks:** Will be posted on the course web-site.
 - **Final Exam:** A three hour brutal exam!
Projects:

- Implementation of one of the 12 approximation algorithms (will be posted on the course web-site).
- Projects will be done individually.
- Projects are due one week before final exam.
- All the coding should be done in C++.
- The protocol for project submission will be presented by Nirav.
- Projects will carry 40% of final grade.

Let us START!

- The main question we did not answer last semester:
 - How can we solve NP-Complete problems efficiently (assuming P is not equal to NP)?
- The promise of approximation algorithms for NP-hard problems is to
 - Find a good solutions (hopefully very close to optimal).
 - Work for every instance of the problem.
 - Finish the algorithm fast (in polynomial time).
- So many terms, so little time!
What is an NP-Optimization Problem?

- An NP-Optimization problem is defined by the following items:
 - \(I \): a set of possible inputs, where we can check for each \(x \) whether or not it belongs to \(I \) in polynomial time.
 - \(S(x) \): The set of feasible solutions for \(x \) in \(I \).
 - \(f(y) \): An evaluation function that assigns a quantity to each solution \(y \) in \(S(x) \).
 - A \textit{min} or \textit{max} objective: a solution with optimum value, for each instance of the problem.

Example:

- Multiprocessor scheduling (minimum makespan):
 - There are \(m \) processors,
 - There are \(n \) jobs, with required execution times \(t_1, \ldots, t_n \).
 - We would like to assign the job to processors such that the total execution time is minimum.
Approximation algorithm defined

- A polynomial time approximation algorithm \(A \) gets input \(x \) in \(I \), and outputs in polynomial time \(y_A \) in \(S(x) \) that is close to optimal subject to some measurement for closeness. We use \(A(x) = f(y_A) \).

How Good is good enough?

- An approximation algorithm is said to be an \(\alpha \)-approximation algorithm for an optimization problem \(\Pi \) if:
 - The algorithm runs in polynomial time.
 - The algorithm always produces a solution which is within a factor \(\alpha \) of the value of the optimal solution.
- For minimization \(\alpha > 1 \), while for maximization \(\alpha < 1 \).
Example:

- Input: a graph $G=(V,E)$.
- Goal: Find a subset of vertices C such that each edge (u,v) has one of its endpoint in C.
- Objective: Minimize $|C|$.
 - If M is a maximal matching for G, then $|M|\leq\text{OPT}_{VC}$.
 - Form a sub-optimal solution C by adding both endpoints of edges in M to C. Observe that C is a vertex cover.
 - The performance guarantee of this solution is at most 2OPT_{VC}.

FPTAS

- A problem Π has a fully polynomial time approximation scheme if there exist an algorithm A that takes as input an instance x of Π and a parameter ε:
 - Runs in time $\text{poly}(|x|,1/\varepsilon)$.
 - Produces a $(1+\varepsilon)$-approximation solution if Π is a minimization problem.
 - Produces a $(1-\varepsilon)$-approximation solution if Π is a maximization problem.
Example

- As we will see later, many problems admit FPTAS, including Knapsack and Euclidian TSP (Arora 1996, Mitchell 1996).

Knapsack:

- **Input**: \(n \) objects. Object \(i \) has weight \(w_i \) and value \(v_i \), with \(w_i \leq C, \forall 1 \leq i \leq n \).
- **Goal**: Find a subset \(S \) of the \(n \) elements that does not exceed capacity \(C \).
- **Objective**: maximize
 \[
 \sum_{i \in S} v_i
 \]
Constant factor and FPTAS for Knapsack

- Will be presented in the class!