Today’s Lecture:

- Approximation algorithm for set cover
- AP-reducibility
 - L-reduction technique
Minimum Set-Cover:

- **INSTANCE**: Collection C of subsets of a finite set S.

- **SOLUTION**: A set cover for S, i.e., a subset C' of C such that every element in S belongs to at least one member of C'

- **MEASURE**: $|C'|$

Johnson’s algorithm:

- Polynomial-time logarithmic approximation algorithm for MINIMUM SET COVER

begin

$U:=S$; $C':=\emptyset$;
for any c_i do $c'_i := c_i$;
repeat

$i:=\text{index of } c' \text{ with maximum cardinality};$
insert c_i in C';
$U := U \setminus \{\text{elements of } c'_i \}$;
delete all elements of c_i from all c';

until $U:=\emptyset$
end.
Performance Guarantee:

- We prove that the performance ratio of the algorithm is at most $\frac{1}{i} \leq k \leq i$ where k is the maximum cardinality of the sets in C.
- Let $a_1, \ldots, a_{|C'|}$ be the sequence of indices obtained by the algorithm.
- Let c_i^j be the surviving part of c_i before index a_j has been chosen.
- The intersection of c_i and $c_{a_j}^j$ is equal to $c_i^j - c_{i+1}^j$.
- l_i denote largest index j such that c_i^j is not empty.

Theorem 1:

For any i, $H(|c_i|) \geq \sum_{1 \leq j \leq |C'|} (|c_i \cap c_{a_j}^j| / |c_{a_j}^j|)$ where $H(n) = \sum_{1 \leq i \leq n} (1/i)$.

Proof:

$$\sum_{i \in S \subseteq |C'|} (|c_i \cap c_{a_j}^j| / |c_{a_j}^j|) = \sum_{i \in S \subseteq |C'|} (|c_i^j - |c_i^{j+1}| / |c_{a_j}^j|)$$

$$\leq \sum_{i \in S \subseteq |C'|} (|c_i^j| - |c_i^{j+1}| / |c_{a_j}^j|)$$

$$= \sum_{i \in S \subseteq |C'|} \sum_{1 \leq i \leq k} (1 / |c_i^j|)$$

$$\leq \sum_{i \in S \subseteq |C'|} \sum_{1 \leq i \leq k} (1 / |c_i^{j+1}|)$$

$$\leq \sum_{i \in S \subseteq |C'|} (H(|c_i^j|) - H(|c_i^{j+1}|))$$

$$= H(|c_i|) = H(|c_i|)$$
Theorem 2:

For any set cover C'',
\[\sum_{c_i \in C''} \sum_{1 \leq j \leq |C'|} \left(\frac{|c_i \cap c^j |}{|c^j |} \right) \geq |C'| \]

Proof:

\[
\sum_{c_i \in C''} \sum_{1 \leq j \leq |C'|} (|c_i \cap c^j | / |c^j |) = \sum_{1 \leq j \leq |C'|} (1/|c^j |) \sum_{c_i \in C''} (|c_i \cap c^j |) \\
\geq \sum_{1 \leq j \leq |C'|} (|c^j | / |c^j |) \\
= |C'|
\]

Finally:

We have $H(|c_i |) \geq \sum_{1 \leq j \leq |C'|} (|c_i \cap c^j | / |c^j |)$

and $\sum_{c_i \in C''} \sum_{1 \leq j \leq |C'|} (|c_i \cap c^j | / |c^j |) \geq |C'|$

That will imply $\sum_{c_i \in C''} H(|c_i |) \geq |C'|$.

Since $|c_i | \leq k$, we have that $\sum_{c_i \in C''} H(K) \geq |C'|$

that is $|C''| \times H(K) \geq |C'|$.

Since $H(K) \leq \ln k + 1 \leq \ln n + 1$, we have the desired performance ratio.
Reducibility and NPO problems

\[x, r \xrightarrow{f(x), r'} \]

\[g(x, y) \xrightarrow{y} \]

\(r \)-approximate solution of \(x \) \hspace{2cm} \(r' \)-approximate solution of \(f(x) \)

AP-reducibility

- \(P_1 \) is AP-reducible to \(P_2 \) if two functions \(f \) and \(g \) and a constant \(c \geq 1 \) exist such that:
 - For any instance \(x \) of \(P_1 \) and for any \(r \), \(f(x, r) \) is an instance of \(P_2 \)
 - For any instance \(x \) of \(P_1 \), for any \(r \), and for any solution \(y \) of \(f(x, r) \), \(g(x, y, r) \) is a solution of \(x \)
 - For any fixed \(r \), \(f \) and \(g \) are computable in polynomial time
 - For any instance \(x \) of \(P_1 \), for any \(r \), and for any solution \(y \) of \(f(x, r) \), if \(R(f(x, r), y) \leq r \), then \(R(x, g(x, y, r)) \leq 1 + c(r-1) \)
Basic properties

- **Theorem:** If P_1 is AP-reducible to P_2 and P_2 is in APX, then P_1 is in APX
 - If A is an r-approximation algorithm for P_2 then
 $g(x, A(f(x), r))$ is a $(1 + c(r-1))$-approximation algorithm for P_1

- **Theorem:** If P_1 is AP-reducible to P_2 and P_2 is in PTAS, then P_1 is in PTAS
 - If A is a polynomial-time approximation scheme for P_2 then
 $g(x, A(f(x, r'), r'))$ is a polynomial-time approximation scheme for P_1, where $r' = 1 + (r-1)/c$

L-reducibility

- P_1 is L-reducible to P_2 if two functions f and g and two constants a and b exist such that:
 - For any instance x of P_1, $f(x)$ is an instance of P_2
 - For any instance x of P_1, and for any solution y of $f(x)$, $g(x, y)$ is a solution of x
 - f and g are computable in polynomial time
 - For any instance x of P_1, $m^*(f(x)) \leq am^*(x)$
 - For any instance x of P_1 and for any solution y of $f(x)$, $|m^*(x) - m(x, g(x, y))| \leq b|m^*(f(x)) - m(f(x), y)|$
Basic property of L-reductions

Theorem: If P_1 is L-reducible to P_2 and P_2 is in PTAS, then P_1 is in PTAS
- Relative error in P_1 is bounded by ab times the relative error in P_2

However, in general, it is not true that if P_1 is L-reducible to P_2 and P_2 is in APX, then P_1 is in APX
- The problem is that the relation between r and r' may be non-invertible

Inapproximability of clique

Theorem: MAXIMUM 3-SAT is L-reducible to MAXIMUM CLIQUE
- $f(C,U)$ is the graph $G(V,E)$ where $V=\{(l,c) : l \text{ is in clause } c\}$ and $E=\{((l,c),(l',c')) : l \neq l' \text{ and } c \neq c'\}$
- $g(C,U,V')$ is a truth-assignment t such that $t(u)$ is true if and only if a clause c exists for which (u,c) is in V'
- $a=b=1$
 - t satisfies at least $|V'|$ clauses
 - optimum measures are equal

Corollary: MAXIMUM CLIQUE does not belong to APX
Inapproximability of independent set

- **Theorem:** MAXIMUM CLIQUE is AP-reducible to MAXIMUM INDEPENDENT SET
 - \(f(G=(V,E)) = G^c=(V,V^2-E) \), which is called the complement graph
 - \(g(G,U)=U \)
 - \(c=1 \)
 - Each clique in \(G \) is an independent set in \(G^c \)

- **Corollary:** MAXIMUM INDEPENDENT SET does not belong to APX

Inapproximability of 2-satisfiability

- **Theorem:** MAXIMUM 3-SAT is L-reducible to MAXIMUM 2-SAT
 - \(f \) transforms each clause \(x \text{ or } y \text{ or } z \) into the following set of 10 clauses where \(i \) is a new variable:
 - \(x, y, z, i, \text{ not } x \text{ or } \text{ not } y, \text{ not } x \text{ or } \text{ not } z, \text{ not } y \text{ or } \text{ not } z, \text{ not } x \text{ or } \text{ not } i, \text{ not } y \text{ or } \text{ not } i, \text{ not } z \text{ or } \text{ not } i \)
 - \(g(C,t)=\text{restriction of } t \text{ to original variables} \)
 - \(a=13, b=1 \)
 - \(m^*(f(x))=6|C|+m^*(x) \leq 12m^*(x)+m^*(x)=13m^*(x) \)
 - \(m^*(f(x))-m(f(x),t) \leq m^*(x)-m(x,g(C,t)) \)

- **Corollary:** MAXIMUM 2-SAT is not in PTAS
MAXIMUM NOT-ALL-EQUAL SAT

- INSTANCE: CNF Boolean formula, that is, set C of clauses over set of variables V

- SOLUTION: A truth-assignment f to V

- MEASURE: Number of clauses that contain both a false and a true literal

Inapproximability of NAE 2-satisfiability

- **Theorem:** MAXIMUM 2-SAT is L-reducible to MAXIMUM NAE 3-SAT

 - f transforms each clause $x \lor y$ into new clause $x \lor y \lor z$
 where z is a new global variable
 - $g(C,t)$=restriction of t to original variables
 - $a=1$, $b=1$
 - z may be assumed false
 - each new clause is not-all-equal satisfied iff the original clause is satisfied

- **Corollary:** MAXIMUM NAE 3-SAT is not in PTAS
Inapproximability of MAXIMUM SAT(B)

- Standard reduction
 - If a variable y occurs h times, create new h variables $y[i]$
 - Substitute ith occurrence with $y[i]$
 - Add ($\neg y[i] \text{ or } y[i+1]$) and ($\neg y[h] \text{ or } y[1]$)

- Not useful: deleting one new clause may increase the measure arbitrarily
 - The cycle of implications can be easily broken
 - If we add all possible implications (that is, we use a clique), then no the number of occurrences is not bounded and there is no linear relation between optimal measures

Expander graphs

- A graph $G=(V,E)$ is an expander if, for every subset S of the nodes, the corresponding cut has measure at least
 \[
 \min\{|S|, |V-S|\}
 \]
 - A cycle is not an expander
 - A clique is an expander (but has unbounded degree)

- Theorem: A constant n_0 and an algorithm A exist such that, for any $k > n_0$, $A(k)$ constructs in time polynomial in k a 14-regular expander graph E_k with k nodes.
AP-reduction through expanders

- We may assume that h is greater than n_0 (it suffices to replicate any clause n_0 times)
- For any i and j, if (i,j) is an edge of E_h then add
 \((\textbf{not } y[i] \textbf{ or } y[j])\) and \((\textbf{not } y[j] \textbf{ or } y[i])\)
- Globally, we have $m + 14N$ clauses where N is the sum of the hs
- Each variable occurs in exactly 28 new clauses and 1 old clause: hence, $B=29$
 - Starting from $B=29$, it is possible to arrive at $B=3$

Proof

- **Claim**: Any solution must satisfy all new clauses (that is, gives the same value to all copies of the same variable)
 - From the expansion property, if we change the truth value of the copies in the smaller set we do not loose anything
- $a=85$
 - $m^*(f(x)) = 14N + m^*(x) \geq 42m + m^*(x) \geq 85m^*(x)$
- $b=1$
 - $m^*(x) - m(x,t) = 14N + m^*(f(x)) - 14N - m(f(x),t) = m^*(f(x)) - m(f(x),t)$
Other inapproximability results

- **Theorem:** MINIMUM VERTEX COVER is not in PTAS
 - Reduction from MAXIMUM 3-SAT(3)

- **Theorem:** MAXIMUM CUT is not in PTAS
 - Reduction from MAXIMUM NAE 3-SAT

- **Theorem:** MINIMUM GRAPH COLORING is not in APX
 - Reduction from variation of independent set