Approximation Algorithms

Department of Mathematics and Computer Science
Drexel University

Today’s Lecture:

- Wrapping it all up, Approximation classes:
 - Absolute Approximation, and negative results.
 - Relative Approximation:
 - \(r \)-approximation, \(\varepsilon \)-approximation
 - Limits to approximation
 - Gap-technique.
Remember:

- Given optimization problem $P=(I,SOL,m,\text{goal})$, an algorithm A is an approximation algorithm for P if, for any given instance x in I, it returns an approximation solution, that is a feasible solution $A(x)$ in Sol(x).
- We accept a solution as an approximation that is feasible whose solution is “not far” from the optimum.
- Our objective is to find how far a solution is from optimal.

Absolute approximation:

- Given an optimization problem P, for any instance x and for any feasible solution y of x, the absolute error of y with respect to x is defined as

$$D(x, y) = |m^*(x) - m(x, y)|$$

- Where $m^*(x)$ denotes the measure of an optimal solution of instance x and $m(x, y)$ denotes the measure of solution y.
Absolute approximate algorithm:

- Given an optimization problem P, and an approximation algorithm A for P, we say that A is an absolute approximation algorithm if there exists a constant k such that, for any instance x of P in I, $D(x, A(x)) \leq k$.

- Most of problem such as Minimum Traveling Salesman and Maximum Independent Set, so not allow for polynomial-time absolute approximation algorithms.

Example:

- Positive Example:
 - 6-coloring of a planar graphs.

- Negative results:
 - Unless $P=NP$, no polynomial time absolute approximation algorithm exists for Maximum Knapsack.
Relative approximation:

- Given an approximation problem \(P \), for any instance \(x \) and for any feasible solution \(y \) of \(x \), the relative error of \(y \) with respect to \(x \) is defined as
 \[
 E(x, y) = \frac{|m^*(x) - m(x, y)|}{\max(m^*(x), m(x, y))}
 \]

- Both in the case of maximization and minimization the relative error is 0 when the solution is optimal.

Bonded performance:

- Given an approximation problem \(P \), for any instance \(x \) of \(P \) and for any feasible solution \(y \) of \(x \), the performance of \(y \) with respect to \(x \) is defined as
 \[
 R(x, y) = \max\left(\frac{m(x, y)}{m^*(x)}, \frac{m^*(x)}{m(x, y)}\right)
 \]

- Both in the case of minimization and maximization problems, the value of performance ratio for an optimal solution is 1.
r-approximation algorithm:

- Given an approximation problem P, and an approximation algorithm A for P, we say A is an r-approximate for P if given any instance x of P, the performance ratio of approximation solution $A(x)$ is bounded by r, that is
 \[R(x, A(x)) \leq r \]

- Notice that if a given approximation algorithm A for problem P, we have that, for all instances x of P, $m(x, A(x)) \leq r m^*(x) + k$, then A is $(r+k)$-approximation

r-approximate Max-Sat

- Remember:
 - Set C of disjunctive clauses of a set of variables V.
 - Truth assignment f from V to \{True, False\}.
 - Goal: Maximum number of clauses satisfied.

- Greedy Algorithm (program 3.1):
 - Identify the literal with maximum frequency.
 - Set the value appropriately and clean up the function.

- This is 2-approximation algorithm.
Class APX

- NPO problems P that admit a polynomial-time r-approximation algorithm, for given constant $r \geq 1$ then P is said to be r-approximable

- Examples: MINIMUM BIN PACKING, MAXIMUM SAT, MAXIMUM CUT, MINIMUM VERTEX COVER

TSP

- Is an important example of an NPO that cannot be r-approximated, no matter how large the is performance ratio r.

- If Minimum TSP belong to APX, then P=NP.
- If P is not equal to NP then APX is a subset of NPO.
Practicality of APX

- In practice knowing that a problem belongs to APX is partially satisfactory.
- For some problems we can find arbitrary close approximate solutions.
- The idea is that, we have two inputs to our algorithm, the instance x and the error $r>1$, and the algorithm can produce an r-approximate solution for any given value of r.

Limits of approximation and Gap Theorem

- Sometimes the approximation technique can lead to very tight approximation solutions, but then a threshold t exists such that r-approximability, with $r < t$, becomes computationally intractable.
- Let P' be an NP-complete decision problem and let P be an NPO minimization approximation problem. Let us assume that there are two polynomial time functions f from instance of P' to instance of P and c from instances of P' to N, and a constant $\text{gap}>0$, such that for any instance x of P',

$$m^*(f(x)) = \begin{cases}
 c(x) & \text{if } x \text{ is a positive instance} \\
 c(x)(1+\text{gap}) & \text{O.W.}
\end{cases}$$

- Then no polynomial time r-approx. algorithm can exist with $r < 1 + \text{gap}$, unless $P=NP$.

Application:
- **Consider**: minimum graph coloring
 - We will use gap-method as reduction from coloring for planar graphs.
 - Remember planar graphs are colorable with at most 4 colors.
 - The problem of deciding whether a planar graph is colorable with at most 3 colors is NP-complete.

Hardness of graph coloring
- $f(G) = G$ where G is a planar graph
 - If G is 3-colorable, then $m*(f(G)) = 3$
 - If G is not 3-colorable, then $m*(f(G)) = 4 = 3(1 + 1/3)$
 - Gap: gap = 1/3

- **Theorem**: MINIMUM GRAPH COLORING has no r-approximation algorithm with $r < 4/3$ (unless P=NP)
Bin-Packing:

- **Consider**: bisection-problem
 - We would like to decide whether a set of integers I can be partitioned into two equal sets.
 - The problem is known to be NP-hard.
- Construct an instance of Bin-packing:
 - $f(I) = (I, B)$ where B is the set of bins each equal to half the total sum
 - If I is a YES-instance, then $m^*(f(I)) = 2$
 - If G is a NO-instance, then $m^*(f(G)) \geq 3 = 2(1+1/2)$
 - Gap: $g = 1/2$

Bin-packing

- **Theorem**: MINIMUM BIN PACKING has no r-approximation algorithm with $r < 3/2$ (unless P=NP).
MINIMUM TSP

- **INSTANCE:** Complete graph $G=(V,E)$, weight function on E

- **SOLUTION:** A tour of all vertices, that is, a permutation p of V

- **MEASURE:** Cost of the tour, i.e.,
 $$\sum_{1 \leq k \leq |V|-1} w(v_{p[k]}, v_{p[k+1]}) + w(v_{p[|V|]}, v_{p[1]})$$

Inapproximability of TSB.

- Let us choose the Hamiltonian circuit as NP-Complete Problem.

- Remember:
 - It is NP-hard to decide whether a graph contains an Hamiltonian circuit.

- For any $g>0$, $f(G=(V,E))=(G’=(V,V^2),w)$
 - where $w(u,v)=1$ if (u,v) is in E,
 - otherwise $w(u,v)=1+|V|g$
Reduction:

- If G has an Hamiltonian circuit, then
 \[m^*(f(G)) = |V| \]

- If G has no Hamiltonian circuit, then
 \[m^*(f(G)) \geq |V| - 1 + 1 + |V|g = |V|(1+g) \]
 - Gap: any $g > 0$

- MINIMUM TSP has no r-approximation algorithm with $r > 1$ (unless P=NP).