Limits and Continuity for the Trigonometric Functions
Thus all trigonometric functions are continuous in their natural domain.
One important tool for finding limits is the “squeezing theorem”

Theorem. Let f, g, and h be functions satisfying

$$g(x) \leq f(x) \leq h(x)$$

for all x in an open interval containing c, except possibly at c. If:

$$\lim_{x \to c} g(x) = \lim_{x \to c} h(x) = L$$

then

$$\lim_{x \to c} f(x) = L$$

We will not prove this result, but it is clearly illustrated by the following diagram.
The graph shows three functions: $h(x)$, $f(x)$, and $g(x)$. The point $(0,0)$ is labeled, indicating the origin. A vertical line at $x = c$ is also depicted.
Example. Compare $\sin(1/x)$ and $x\sin(1/x)$ at 0.

As x tends to 0, $1/x$ tends to infinity. Thus, as x tends toward 0, there are values of x for which $1/x$ is 2π, 4π, 6π, 8π, etc. At all of these points, the sine is 0. There are also, as x tends toward 0, values of x for which $1/x$ is $\pi/2$, $(\pi/2) + 2\pi$, $(\pi/2) + 4\pi$, $(\pi/2) + 6\pi$, etc., and at these points the sine is 1. We conclude that the function $\sin(1/x)$ has no limit as x tends to 0.
The function $x \sin(1/x)$ has the following graph.

This function is very difficult to analyze directly, but we can use the squeezing theorem. Since $-1 \leq \sin(x) \leq 1$ it follows that $-x \leq x \sin(x) \leq x$.

Since $\lim_{x \to 0} x = \lim_{x \to 0} -x = 0$ we have $\lim_{x \to 0} x \sin(1/x) = 0$.
Two Important Trigonometric Limits

Area of green sector is \(\frac{1}{2} \cdot r^2 \cdot x \)
\[\text{Area} = \frac{\sin(x)}{2} \]

\[\text{Area} = \frac{x}{2} \]

\[\text{Area} = \frac{\tan(x)}{2} \]
Thus $\sin(x) < x < \tan(x)$, and so if we divide by $\sin(x)$, we have

$$1 < \frac{x}{\sin(x)} < \frac{1}{\cos(x)}$$

or, after taking reciprocals

$$\cos(x) < \frac{\sin(x)}{x} < 1 \quad (*)$$

for every x between 0 and $\pi/2$. This also holds between $-\pi/2$ and 0, since $\sin(-x) = \sin(x)$ and $\cos(-x) = \cos(x)$.

Thus (*) holds in the interval $(-\pi/2, \pi/2)$ around 0.
Since \(\lim_{x \to 0} \cos(x) = \cos(0) = 1 \) the squeezing theorem shows that

\[
\lim_{x \to 0} \frac{\sin(x)}{x} = 1
\]

The second limit is found from this by using the identity

\[
\sin^2(x) = 1 - \cos^2(x)
\]

\[
\lim_{x \to 0} \frac{1 - \cos(x)}{x} = \lim_{x \to 0} \frac{1 - \cos(x) \cdot 1 + \cos(x)}{x(1 + \cos(x))} = \lim_{x \to 0} \frac{1 - \cos^2(x)}{x(1 + \cos(x))}
\]

\[
= \lim_{x \to 0} \frac{\sin^2(x)}{x(1 + \cos(x))} = \lim_{x \to 0} \frac{\sin(x) \cdot \sin(x)}{x(1 + \cos(x))} = 0
\]
Exercise. Find any points of discontinuity for the function

\[f(x) = \frac{4}{1 - 2\cos(x)} \]

Solution. The function is continuous except where the denominator is 0. This happens when \(1 - 2\cos(x) = 0 \), or \(\cos(x) = \frac{1}{2} \).

Thus \(x = \frac{\pi}{3}, -\frac{\pi}{3} \) or these angles plus any multiple of \(2\pi \).

This is shown in the following picture.
Example. Compute \[\lim_{x \to \infty} \sin \left(\frac{2}{x} \right) \]

Solution. Since the sine is a continuous function, we know by a previous theorem that

\[
\lim_{x \to \infty} \sin \left(\frac{2}{x} \right) = \sin \left(\lim_{x \to \infty} \frac{2}{x} \right) = \sin(0) = 0
\]
Example. Compute \(\lim_{h \to 0} \frac{\sin(h)}{5h} \)

Solution. Since constants can come out of the limit, we have

\[
\lim_{h \to 0} \frac{\sin(h)}{5h} = \frac{1}{5} \lim_{h \to 0} \frac{\sin(h)}{h} = \frac{1}{5}
\]

Example. Compute \(\lim_{s \to 0} \frac{\sin(5s)}{s} \)

Solution. We make a substitution, \(u = 5s \). Then

\[
\lim_{s \to 0} \frac{\sin(5s)}{s} = 5 \lim_{s \to 0} \frac{\sin(5s)}{5s} = 5 \lim_{u \to 0} \frac{\sin(u)}{u} = 5
\]
Example. Compute

$$\lim_{\theta \to 0} \left(\frac{\theta^2}{1 - \cos \theta} \right)$$

Solution. This expression must be changed to be understood. We will multiply the top and bottom by $1 + \cos(\theta)$

$$\lim_{\theta \to 0} \left(\frac{\theta^2}{1 - \cos \theta} \right) = \lim_{\theta \to 0} \left(\frac{\theta^2}{1 - \cos \theta} \right) \left(\frac{1 + \cos \theta}{1 + \cos \theta} \right)$$

$$= \lim_{\theta \to 0} \left(\frac{\theta^2 (1 + \cos \theta)}{1 - \cos^2 \theta} \right) = \lim_{\theta \to 0} (1 + \cos \theta) \left(\frac{\theta^2}{\sin^2 \theta} \right)$$

$$= \lim_{\theta \to 0} (1 + \cos \theta) \lim_{\theta \to 0} \left(\frac{\theta^2}{\sin^2 \theta} \right) = 2$$
Example. Compute \[\lim_{h \to 0} \left(\frac{h}{\tan(h)} \right) \]

Solution. Here we begin with a trigonometric identity.

\[
\lim_{h \to 0} \left(\frac{h}{\tan(h)} \right) = \lim_{h \to 0} \left(\frac{h}{\sin(h)/\cos(h)} \right) = \lim_{h \to 0} \left(\frac{h\cos(h)}{\sin(h)} \right)
\]

\[
= \left(\lim_{h \to 0} \cos(h) \right) \left(\lim_{h \to 0} \frac{h}{\sin(h)} \right) = 1
\]
Example. Compute \[
\lim_{t \to 0} \left(\frac{t+3\sin t}{t} \right)
\]

Solution. Here we begin by breaking up a sum.

\[
\lim_{t \to 0} \left(\frac{t+3\sin t}{t} \right) = \left(\lim_{t \to 0} \frac{t}{t} \right) + \left(\lim_{t \to 0} \frac{3\sin t}{t} \right)
\]

\[
= 1 + 3 \left(\lim_{t \to 0} \frac{\sin t}{t} \right) = 4
\]