Length of a Plane Curve

Suppose that \(y = f(x) \) is a smooth curve on the interval \([a, b]\). Choose points \(x_1, \ldots, x_n \) and let \(P_k \) be the point above \(x_k \) on the curve. Suppose that the length of the segment connecting \(P_k \) and \(P_{k+1} \) is \(L_k \). Then the length of the curve is approximated by

\[
\sum_{k=1}^{n-1} L_k
\]
Clearly we have

\[
(\Delta x_k)^2 + (\Delta y_k)^2 = (L_k)^2
\]

So that

\[
L_k = \sqrt{(\Delta x_k)^2 + (\Delta y_k)^2}
\]

Thus the length of the curve is approximated by

\[
L \approx \sum_{k=1}^{n-1} \sqrt{(\Delta x_k)^2 + (\Delta y_k)^2}
\]
Now suppose that the curve is smooth, that is $y = f(x)$ has a continuous derivative in (a, b). Then between x_k and x_{k+1} there is a point x_k^* with $f'(x_k^*) = \frac{\Delta y_k}{\Delta x_k}$.

We have:

\[
L \approx \sum_{k=1}^{n-1} \sqrt{\left(\Delta x_k\right)^2 + \left(\Delta y_k\right)^2} = \sum_{k=1}^{n-1} \sqrt{1 + \left(\frac{\Delta y_k}{\Delta x_k}\right)^2} \Delta x_k = \sum_{k=1}^{n-1} \sqrt{1 + f'(x_k^*)^2} \Delta x_k
\]
This is clearly a Riemann sum for the integral
\[
\int_a^b \sqrt{1+\left[f'(x)\right]^2} \, dx = \int_a^b \sqrt{1+\left[\frac{dy}{dx}\right]^2} \, dx
\]

Thus:

Theorem. Suppose that \(y = f(x) \) is a smooth curve on the interval \([a, b]\) (meaning that the function is continuous on \([a, b]\) and its derivative exists and is continuous on \((a, b)\)). Then the length of the curve \(y = f(x) \) between \(a \) and \(b \) is given by
\[
\int_a^b \sqrt{1+\left[f'(x)\right]^2} \, dx = \int_a^b \sqrt{1+\left[\frac{dy}{dx}\right]^2} \, dx
\]
How to set up an arc length integral using infinitesimals.

If you zoom in on a smooth curve sufficiently far, it will appear to be a straight line segment. Thus if you start at any point x, then move an infinitesimal distance dx, the height of the curve increases by dy and the following diagram summarizes the situation.

Thus $ds^2 = dx^2 + dy^2$
Manipulating formally, we have

\[ds = \sqrt{dx^2 + dy^2} = \sqrt{1 + \left(\frac{dy}{dx} \right)^2} \, dx \]

Thus

\[S = \int_a^b ds = \int_a^b \sqrt{1 + \left(\frac{dy}{dx} \right)^2} \, dx \]

As we saw before. The only thing that needs to be remembered is the equation

\[ds^2 = dx^2 + dy^2 \]
Example. Find the length of the curve $y = x^2$ from $(0, 0)$ to $(4, 8)$.

Solution.

$$S = \int_{0}^{4} \sqrt{1 + \left(\frac{dy}{dx} \right)^2} \, dx = \int_{0}^{4} \sqrt{1 + \left(\frac{3}{2} \cdot x^{-2} \right)^2} \, dx = \int_{0}^{4} \sqrt{1 + \frac{9}{4} x} \, dx$$

Let $u = 1 + \frac{9}{4} x$, $du = \frac{9}{4} \, dx$. Then

$$S = \frac{4}{9} \int_{1}^{10} \sqrt{u} \, u \, du = \frac{4}{9} \int_{3}^{10} \sqrt{u} \, du = \frac{4}{9} \left[\frac{2}{3} u^{3/2} \right]_{3}^{10} = \frac{8}{27} \left[10^2 - 3^2 \right] = \frac{8}{27} \left[\sqrt{1000} - 1 \right]$$
Example. Find the length of the curve \(y = \frac{x^6 + 8}{16x^2} \) from \(x = 2 \) to \(x = 3 \).

Solution. \[
\frac{d}{dx} \left[\frac{x^6 + 8}{16x^2} \right] = \frac{dy}{dx} \left[\frac{x^4}{16} + \frac{x^{-2}}{2} \right] = x^3 - x^{-3}
\]

\[
1 + \left(\frac{dy}{dx} \right)^2 = 1 + \frac{x^6}{16} - \frac{1}{2} + x^{-6} = \frac{x^6}{16} + \frac{1}{2} + x^{-6} = \left(\frac{x^3}{4} + x^{-3} \right)^2
\]

\[
S = \frac{3}{2} \sqrt{1 + \left(\frac{dy}{dx} \right)^2} \cdot dx = \left[\frac{3x^3}{4} + x^{-3} \right] dx = \left[\frac{x^4}{16} - \frac{x^{-2}}{2} \right]_2^3 = \frac{595}{144}
\]
In a similar way, we can find the length of a curve whose equation is $x = g(y)$. As before, we begin with

$$ds^2 = dx^2 + dy^2$$

Manipulating formally as before, we have

$$ds = \sqrt{dx^2 + dy^2} = \left[\sqrt{\left(\frac{dx}{dy}\right)^2 + 1} \right] dy = \left[\sqrt{1 + \left(\frac{dx}{dy}\right)^2} \right] dy$$

Thus

$$S = \int_c^d ds = \int_c^d \sqrt{1 + \left(\frac{dx}{dy}\right)^2} dy$$
Example. Find the length of the curve

$$x = \frac{1}{3} \left(y^2 + 2 \right)^{\frac{3}{2}}$$

from \(y = 0 \) to \(y = 1 \).

Solution.

$$\frac{dx}{dy} = \frac{1}{2} \left(y^2 + 2 \right)^{\frac{1}{2}} \left(2y \right) = y \left(y^2 + 2 \right)^{\frac{1}{2}}$$

$$1 + \left(\frac{dx}{dy} \right)^2 = 1 + y^2 \left(y^2 + 2 \right) = y^4 + 2y^2 + 1 = \left(y^2 + 1 \right)^2$$

$$S = \int_0^1 \sqrt{1 + \left(\frac{dx}{dy} \right)^2} \, dy = \int_0^1 \left[y^2 + 1 \right] \, dy = \left[\frac{y^3}{3} + y \right]_0^1 = \frac{4}{3}$$
We can also find the length of curves defined parametrically as $x = x(t), y = y(t)$. We start with the usual formula

$$ds^2 = dx^2 + dy^2$$

Then

$$ds = \sqrt{dx^2 + dy^2} = \left[\sqrt{\left(\frac{dx}{dt}\right)^2 + \left(\frac{dy}{dt}\right)^2} \right] dt$$

Thus

$$S = \int_{t_1}^{t_2} ds = \int_{t_1}^{t_2} \sqrt{\left(\frac{dx}{dt}\right)^2 + \left(\frac{dy}{dt}\right)^2} dt$$
Example. Find the length of the circumference of a circle of radius r using the parametrization $x = r\cos(t), y = r\sin(t)$ from $t = 0$ to $t = 2\pi$.

Solution.

\[
\frac{dx}{dt} = -r\sin(t); \quad \frac{dy}{dt} = r\cos(t)
\]

\[
\left(\frac{dx}{dt}\right)^2 + \left(\frac{dy}{dt}\right)^2 = r^2\cos^2(t) + r^2\sin^2(t) = r^2
\]

\[
S = \int_{0}^{2\pi} \sqrt{\left(\frac{dx}{dt}\right)^2 + \left(\frac{dy}{dt}\right)^2} \ dt = \int_{0}^{2\pi} r \ dt = 2\pi r
\]
Example. Find the length of the parametrized curve

\[x = (1+t)^2, \quad y = (1+t)^3 \]

from \(t = 0 \) to \(t = 1 \).

Solution.

\[
\left(\frac{dx}{dt} \right)^2 + \left(\frac{dy}{dt} \right)^2 = \left[2(1+t) \right]^2 + \left[3(1+t)^2 \right]^2 = (1+t)^2 \left[4 + 9(1+t)^2 \right]
\]
\[S = \int_0^1 \sqrt{\left(\frac{dx}{dt} \right)^2 + \left(\frac{dy}{dt} \right)^2} \, dt = \int_0^1 (1+t)\sqrt{4+9(1+t)^2} \, dt \]

Let \(u = 4+9(1+t)^2; \) \(du = 18(1+t)dt \)

\[S = \int_{13}^{40} \sqrt{u} \, du = \frac{1}{18} \cdot \frac{2}{3} \left[u^{3/2} \right]_{13}^{40} = \frac{1}{27} \left[80\sqrt{10} - 13\sqrt{13} \right] \]