Surface area

When a curve is revolved around an axis, the curve itself generates a surface. This is the boundary of the corresponding volume of revolution.
Every infinitesimal element of arc ds generates an infinitesimal element of surface dS.

The surface area of this infinitesimal area is $dS = 2\pi l ds$.
Thus if the arc is part of a curve \(y = f(x) \), then \(l = y \) and we have

\[
dS = 2\pi y ds = 2\pi y \sqrt{1 + \left(\frac{dy}{dx}\right)^2} \, dx
\]

so

\[
S = \int_a^b 2\pi y \sqrt{1 + \left(\frac{dy}{dx}\right)^2} \, dx
\]
If the arc is part of the curve $x = g(y)$, then a similar analysis shows that

$$dS = 2\pi x ds = 2\pi x \sqrt{1 + \left(\frac{dx}{dy}\right)^2} \, dy$$

$$S = \int_a^b 2\pi x \sqrt{1 + \left(\frac{dx}{dy}\right)^2} \, dy$$
Example. Find the area of the surface generated by revolving the curve $y = \sqrt{x}$ from $x = 1$ to $x = 4$ about the x-axis.

Solution.

$$dS = 2\pi y \sqrt{1 + \left(\frac{dy}{dx}\right)^2} \, dx = 2\pi \sqrt{x} \sqrt{1 + \frac{1}{4x}} \, dx = 2\pi \sqrt{x + \frac{1}{4}} \, dx$$

$$S = 2\pi \int_{1}^{4} \sqrt{x + \frac{1}{4}} \, dx = 2\pi \left[\frac{17}{4} \sqrt{u} \sqrt{u} \frac{3}{u^2} \left[\frac{17}{4} \right]^{5/4} \right]_{5/4}^{5/4} = \pi \left[\frac{17\sqrt{17} - 5\sqrt{5}}{6} \right]$$
Example. Find the area of the surface of a sphere by regarding the sphere as generated by revolving a semicircle around an axis.

Solution. The sphere of radius r can be generated by revolving around the x axis the semicircle

$$y = \sqrt{r^2 - x^2}$$

This picture shows the case for $r = 2$.
\[\frac{dy}{dx} = \frac{-2x}{2\sqrt{r^2-x^2}} = \frac{-x}{\sqrt{r^2-x^2}} \]

\[dS = 2\pi y \sqrt{1 + \left(\frac{dy}{dx} \right)^2} \, dx = 2\pi \sqrt{r^2-x^2} \sqrt{1 + \frac{x^2}{r^2-x^2}} \, dx \]

\[= 2\pi \sqrt{r^2-x^2} \sqrt{\frac{r^2}{r^2-x^2}} \, dx = 2\pi r \, dx \]

\[S = 2\pi \int_{-r}^{r} r \, dx = 2\pi r x \bigg|_{-r}^{r} = 4\pi r^2 \]
Problem. Find the area of the surface generated by revolving around the y axis the curve \(x=2\sqrt{1-y} \) for \(y \) between \(-1\) and 0.

Solution.

\[
dS = 2\pi x \, ds = 4\pi \sqrt{1-y} \sqrt{1 + \left(\frac{-1}{\sqrt{1-y}} \right)^2} \, dy = 4\pi \sqrt{1-y} \sqrt{\frac{2-y}{1-y}} \, dy
\]

\[
= 4\pi \sqrt{2-y} \, dy
\]

\[
S = 4\pi \int_{-1}^{0} \sqrt{2-y} \, dy = 4\pi \int_{\frac{2}{3}}^{\frac{3}{2}} \sqrt{u} (-du)
\]

\[
= 4\pi \int_{\frac{3}{2}}^{\frac{2}{3}} \sqrt{u} (-du) = 4\pi \int_{\frac{3}{2}}^{\frac{2}{3}} \sqrt{u} \, du = \frac{8\pi (3\sqrt{3} - 2\sqrt{2})}{3}
\]
Example. Find the area of a cone of height h and radius r by regarding it to be generated by revolving the straight line shown below about the x axis.
Solution. The cone can be generated by revolving the graph of the function

\[y = \frac{r}{h} x \]

around the \(x \) axis.

\[
dS = 2\pi y \sqrt{1 + \left(\frac{dy}{dx} \right)^2} \, dx = 2\pi \left(\frac{r}{h} x \right) \sqrt{1 + \frac{r^2}{h^2}} \, dx
\]

\[
S = 2\pi \frac{r}{h} \sqrt{1 + \frac{r^2}{h^2}} \int_0^h x \, dx = \left[2\pi \frac{r}{h} \sqrt{1 + \frac{r^2}{h^2}} \frac{x^2}{2} \right]_0^h = \left[2\pi \frac{r}{h} \sqrt{1 + \frac{r^2}{h^2}} \frac{h^2}{2} \right] = \pi r \sqrt{h^2 + r^2}
\]

\[
2\pi \frac{r}{h} \sqrt{1 + \frac{r^2}{h^2}} \frac{h^2}{2} = \frac{2\pi rh^2 \sqrt{h^2 + r^2}}{2h^2} = \pi r \sqrt{h^2 + r^2}
\]
You can also find surface area generated by a parametrically defined curve, in some cases.

Example. Find the area of the surface of a sphere by regarding the sphere as generated by revolving a semicircle around an axis. Parametrize the semicircle.

We take the parametric form to be: \[
\begin{cases}
 x = r \cos(\theta), \\
 y = r \sin(\theta),
\end{cases}
\] for \(0 \leq \theta \leq \pi\).
Then the surface area is:

\[dS = 2\pi \ yds = 2\pi \ r \sin(\theta) \sqrt{\left(\frac{dx}{d\theta}\right)^2 + \left(\frac{dy}{d\theta}\right)^2} \ d\theta \]

\[= 2\pi \ r \sin(\theta) \sqrt{r \cos(\theta)^2 + r \sin(\theta)^2} \ d\theta = 2\pi \ r^2 \sin(\theta) \ d\theta \]

\[S = 2\pi \ r^2 \int_{0}^{\pi} \sin(\theta) \ d\theta = 2\pi \ r^2 \left[\cos(0) - \cos(\pi) \right] = 4\pi \ r^2 \]