Rectilinear Motion; Average Value

Let $s(t)$ be the position of the particle on the line at time t, and s_0 be the initial position of the particle. At any time, the instantaneous velocity and acceleration of the particle are given by

$$v(t) = s'(t) = \frac{ds}{dt} \quad \text{and} \quad a(t) = v'(t) = \frac{dv}{dt} = \frac{d^2s}{dt^2}$$

These formulas also mean that

$$s(t) = \int v(t) \, dt \quad \text{and} \quad v(t) = \int a(t) \, dt$$
Example. The position of a body moving along a straight line with time is given by \(s(t) = \sin(2t) \). Find expressions for the velocity and acceleration at any time.

Solution.

\[
\begin{align*}
v(t) &= s'(t) = \sin(2t)' = 2\cos(2t) \\
a(t) &= v'(t) = (2\cos(2t))' = -4\sin(2t)
\end{align*}
\]
Example. A body moves along a straight line in such a way that the acceleration at any time is \(a(t) = 2t \). If the body starts with initial position \(s(0) = 1 \) and initial velocity \(v(0) = 3 \), find expressions for the velocity and position at any time.

Solution.

\[
v(t) = \int a(t) \, dt = \int 2t \, dt = t^2 + C_1. \quad \text{Since } 3 = v(0) = C_1, \text{ we have}\]

\[
v(t) = t^2 + 3.
\]

\[
s(t) = \int v(t) \, dt = \int \left(t^2 + 3 \right) \, dt = \frac{t^3}{3} + 3t + C_2. \quad \text{Since } 1 = s(0) = C_2, \text{ we have}\]

\[
s(t) = \int v(t) \, dt = \int \left(t^2 + 3 \right) \, dt = \frac{t^3}{3} + 3t + 1.
\]
Example. A particle moves along the s axis. Use the given information to find the position function of the particle.

(a) \(v(t) = t^3; s(8) = 0 \)
(b) \(a(t) = \sqrt{t}; v(4) = 1; s(4) = -5 \)

Solution.

(a) \(s(t) = \int v(t) \, dt = \int t^3 \, dt = \frac{3}{5} t^5 + C_1 \).

Since \(0 = s(8) = \frac{96}{5} + C_1 \), \(C_1 = -\frac{96}{5} \) and \(s(t) = \frac{3}{5} t^5 - \frac{96}{5} \).
(b) \[v(t) = \int a(t) \, dt = \int \sqrt{t} \, dt = \frac{2}{3} t^{3/2} + C. \]

Since \[1 = v(4) = \frac{16}{3} + C, \quad C = 1 - \frac{16}{3} = -\frac{13}{3} \]
and \[v(t) = \frac{2}{3} t^{3/2} - \frac{13}{3}. \]

Then \[s(t) = \int v(t) \, dt = \left[\frac{2}{3} t^{3/2} - \frac{13}{3} \right] \, dt = \frac{4}{15} t^{5/2} - \frac{13}{3} t + C_2. \]

Since \[-5 = s(4) = \frac{128}{15} - \frac{52}{3} + C_2 = -\frac{44}{5} + C_2, \quad C_2 = \frac{44}{5} - 5 = \frac{19}{5}, \]

Finally, \[s(t) = \frac{4}{15} t^{5/2} - \frac{13}{3} t + \frac{19}{5}. \]
Uniformly Accelerated Motion

A very important case is that of constant acceleration.

Theorem. If a particle moves with a constant acceleration a along an s-axis, and if the position and velocity at time $t = 0$ are respectively s_0 and v_0, then the position and velocity functions of the particle are

$$s(t) = s_0 + v_0 t + \frac{1}{2} at^2 \quad \text{and} \quad v(t) = v_0 + at$$

Proof.

$$v(t) = \int a \, dt = at + C_1.$$ Since $v_0 = v(0) = C_1$, we have $v(t) = v_0 + at$.

$$s(t) = \int \left(v_0 + at \right) \, dt + C_2 = v_0 t + \frac{at^2}{2} + C_2.$$ Since $s_0 = s(0) = C_2$

$$s(t) = s_0 + v_0 t + \frac{1}{2} at^2$$
Problem: A car traveling at 60 mph along a straight road decelerates at a constant rate of 10 ft/s².
(a) How long will it take until the speed is 45 mph?
(b) How far will the car travel before coming to a stop?

Solution. (a) First of all we need to convert mi/hr to ft/s.

\[
\begin{align*}
\frac{1\text{mi}}{\text{hr}} \times \frac{1\text{hr}}{3600\text{s}} \times \frac{5280\text{ft}}{\text{mi}} &= \frac{22\text{ft}}{15\text{s}} \\
\end{align*}
\]

This means that 60mph = 88ft/s and 45 mph = 66 ft/s.

The constant acceleration is \(a = -10\), and the initial velocity is 88 ft/s. Thus \(v(0) = v_0 + at = 88 - 10t\).

We see that if we set \(v = 45 \text{ mph} = 66 \text{ ft/s}\), and solve for \(t\), we will have \(t = \frac{88 - 66}{10} = 2.2\text{s}\).
(b) Since $v(t)=88-10t$ it is clear that the car will stop in 8.8s.

Take the initial position to be 0, so that $s(t)=s_0 + v_0 t + \frac{1}{2}at^2 = 88t - 5t^2$.

Then at $t = 8.8$ we have $s(8.8) = (88)(8.8) - 5(8.8)^2 = 387.2$ ft.
Problem. In the final sprint of a rowing race the challenger is rowing at a constant speed of 12 m/s. At the point where the leader is 100 m from the finish line and the challenger is 15 m behind, the leader is rowing at 8 m/s but starts accelerating at a constant 0.5 m/s². Who wins?

Solution. We start time at the moment that the leader begins to accelerate. At this moment the position of the leader is at $s = -100$m, the velocity is 8 m/s and the acceleration is 0.5 m/s². The position of the leader at subsequent time t is then

$$s(t) = s_0 + v_0 t + \frac{1}{2} a t^2 = -100 + 8t + \frac{1}{4} t^2$$
To find the time it takes the leader to cross the finish line \((s = 0)\), we set \(s\) to 0 and solve the resulting quadratic equation.

\[-100+8t+\frac{1}{4}t^2=0\] or \(t^2+32t-400=0\). The solutions are \(t=-41.62\) and \(t=9.6125\) so we take the second.

In 9.6125 seconds the challenger travels \((9.6125)(12) = 115.35\) m. Since the challenger begins 115 m from the finish line, the challenger wins, since the challenger is already about a foot beyond the finish when the leader crosses.
The free fall model

The force of gravity near the surface of the earth is taken to be a constant \(-g\), where \(g = 9.8 \text{ m/s}^2\) or \(32 \text{ ft/s}^2\). Thus (neglecting friction) if a particle has an initial position and velocity of \(s_0\) and \(v_0\), resp, and moves subject only to the force of gravity, then the formula for its velocity at any time is

\[
v(t) = v_0 - gt
\]

and the formula for its position at any time \(t\) is

\[
s(t) = s_0 + v_0 t - \frac{gt^2}{2}
\]
\[a = -g \]
Problem. A ball is thrown vertically upward from ground level with an initial velocity of 16 ft/s.
(a) How high will the ball rise?
(b) How long will it take for the ball to hit the ground?
(c) How long will the ball be moving upward?

Solution. Here we have $s_0 = 0$, $v_0 = 16$. Thus

$$v(t) = 16 - 32t \quad \quad s(t) = 16t - 16t^2$$

We first solve (c). The ball rises until it stops ($v = 0$), which occurs at $t = 1/2$ s.
When $t = 1/2$, we see that $s(.5) = 16(.5) - 16(.25) = 8 - 4 = 4$ ft. which is the answer to (a).
Finally, setting $s = 0$ (return to ground) and solving for t, we have $0 = 16t - 16t^2$ so $t = 1$ sec. for (b).
If we know the formula for the velocity \(v(t) \) of a particle moving along a straight line, then between time \(t = t_0 \) and time \(t = t_1 \), we see that

\[
\int_{t_0}^{t_1} v(t) \, dt = \int_{t_0}^{t_1} s'(t) \, dt = s(t_1) - s(t_0)
\]

Thus the definite integral of the velocity between two times is the change in position that occurs during that time interval. This is called the \textit{displacement}.

In contrast, the total distance traveled in that time interval is given by

\[
d = \int_{t_0}^{t_1} |v(t)| \, dt
\]
Example. A particle moves on a coordinate line so that its velocity at any time \(t \) is
\[
v(t) = t^2 - 2t
\]
m/s.
(a) Find the displacement of the particle during the time interval \(0 \leq t \leq 3 \).
(b) Find the distance traveled during the same time interval.

Solution. (a) The displacement is
\[
\int_{0}^{3} v(t) = \int_{0}^{3} (t^2 - 2t) dt = \left[\frac{t^3}{3} - t^2 \right]_{0}^{3} = 9 - 9 = 0
\]
(b) We must integrate the absolute value by dividing the integral up into parts.

\[\int_{0}^{3} |v(t)|\,dt = \int_{0}^{1} |v(t)|\,dt + \int_{1}^{3} |v(t)|\,dt = \int_{0}^{2} 2t - t^2\,dt + \int_{2}^{3} t^2 - 2t\,dt \]

\[= \left[t^2 - \frac{t^3}{3} \right]_{0}^{2} + \left[\frac{t^3}{3} - t^2 \right]_{2}^{3} = \left(4 - \frac{8}{3} \right) + \left(\frac{4}{3} - \frac{8}{3} \right) = \frac{8}{3} \]
The average value of a function

Definition. The average value of a function f over an interval $[a, b]$ is defined by

$$f_{\text{ave}} = \frac{1}{b-a} \int_a^b f(x)dx$$
The average height times the base length is equal to the integral.
Problem. Find the average value of the function e^x from -1 to $\ln 5$.

Solution.

$$f_{\text{ave}} = \frac{1}{(\ln(5)+1)} \int_{-1}^{\ln(5)} e^x \, dx = \frac{1}{(\ln(5)+1)} \left[e^{\ln(5)} - e^{-1} \right] = \frac{5 - \frac{1}{e}}{(\ln(5)+1)}$$

Problem. Find the average value of the function x^2 from 1 to 4.

Solution.

$$f_{\text{ave}} = \frac{1}{4-1} \int_{1}^{4} x^2 \, dx = \frac{1}{3} \left[\frac{x^3}{3} \right]_{1}^{4} = \frac{1}{3} \left[\frac{64}{3} - \frac{1}{3} \right] = \frac{63}{9} = 7$$