1. Use the tables on the endpapers of your text to evaluate the integral
\[
\int \frac{dx}{1 + e^x}
\]

2. Use the tables on the endpapers of your text to evaluate the following integral. First make the substitution \(u = x^2 \)
\[
\int \frac{2u \, du}{9 - u^2}
\]

3. Use the Riemann sum with right endpoint evaluation and two intervals to approximate the integral.
\[
\int_0^2 x^3 \, dx
\]
Sketch the function and the approximation on the same graph.

4. Set up the Simpson’s Rule approximation for the definite integral of 3., using 4 subintervals.
Simpson’s rule:
\[
\int_a^b f(x) \, dx = \left(\frac{b - a}{3n} \right) \left[y_0 + 4y_1 + 2y_2 + 4y_3 + 2y_4 + \cdots + 2y_{n-2} + 4y_{n-1} + y_n \right]
\]

5. Compute the integral
\[
\int_0^{10} \frac{dx}{4(x-1)(x-2)^2}
\]
by partial fractions.

6. Set up the partial fractions decomposition for the expression
\[
\frac{3x^2 - x + 2}{(x+3)(x-7)(x^2 + 4)}
\]
but DO NOT FIND THE UNKNOWN COEFFICIENTS.

7. Evaluate the integral.
\[
\int_0^1 \frac{dx}{2 \sqrt{x}}
\]

8. Evaluate the integral.
\[
\int_2^\infty \frac{1}{x^2} \, dx
\]

9. Solve the initial value problem \(\frac{dy}{dx} = xy^2 ; \, y(0) = -1 \).

10. Solve the initial value problem \(\frac{dy}{dx} + xy = x ; \, y(2) = 1 \).

11. Suppose that a radioactive substance decays with a half life of 200 days, and 30 gms are initially present.
 (a) Find a formula for the amount of the substance present at any time \(t \).
 (b) How long will it be before there are 10 gms present?

12. Suppose that an initial population of 25000 bacteria grows exponentially at the rate of 2% per hr. Find the number \(y(t) \) of bacteria at time \(t \). How long does it take for the population to double.
13. A direction field for the differential equation \(y' = x^2 - y^2 \) is shown below. Sketch on the direction field the graph of the solution that satisfies each of the following initial conditions.

(a) \(y(-2) = 1 \) \hspace{1cm} (b) \(y(0) = 2 \) \hspace{1cm} (c) \(y(1) = 2 \)