1. (6 pts) Show that the equation $x^2 + y^2 + z^2 = 2x$ represents a sphere, and find its center and radius.

Solution. Upon completing the square on the variable x, we have:

$$(x^2 - 2x + 1) + y^2 + z^2 = 0 + 1$$

$$(x - 1)^2 + y^2 + z^2 = 1$$

Thus the equation represents a sphere with center at the point $(1, 0, 0)$ and radius 1.

2. Let $u = 3i - j - 2k$ and $v = 2i - 3j + k$. Find: (5 pts each)

(a) The dot product of u and v.

Solution.

$$u \cdot v = (3)(2) + (-1)(-3) + (-2)(1) = 6 + 3 - 2 = 7$$

(b) The angle between u and v.

Solution.

$$\cos \theta = \frac{u \cdot v}{\|u\| \|v\|} = \frac{7}{\sqrt{3^2 + (-1)^2 + (-2)^2} \sqrt{2^2 + (-3)^2 + 1^2}} = \frac{7}{\sqrt{14} \sqrt{14}} = \frac{1}{2}$$

$$\theta = \cos^{-1}\left(\frac{1}{2}\right) = \frac{\pi}{3} \quad \text{(or 60°)}$$

(c) The scalar projection of u onto v.

Solution.

$$\text{comp}_v u = \frac{u \cdot v}{\|v\|} = \frac{7}{\sqrt{14}}$$

(d) The vector projection of u onto v.

Solution.

$$\text{proj}_v u = \left(\frac{u \cdot v}{\|v\|^2}\right) \frac{v}{\|v\|} = \left(\frac{7}{\sqrt{14} \sqrt{14}}\right) \frac{2i - 3j + k}{2} = \frac{2i - 3j + k}{2} = i - \frac{3}{2}j + \frac{1}{2}k$$
3. Let \(\mathbf{u} = \langle 2, -1, 3 \rangle \) and \(\mathbf{v} = \langle 1, 1, -2 \rangle \). Find: (4 pts each)

(a) The cross product of \(\mathbf{u} \) and \(\mathbf{v} \).

Solution.

\[
\mathbf{u} \times \mathbf{v} = \begin{vmatrix}
i & j & k \\
2 & -1 & 3 \\
1 & 1 & -2
\end{vmatrix} = (2 - 3)i - (4 - 3)j + (2 + 1)k = -i + 7j + 3k
\]

(b) A unit vector (length 1) which is perpendicular to \(\mathbf{u} \) and \(\mathbf{v} \).

Solution.

\[
\pm \frac{\mathbf{u} \times \mathbf{v}}{|\mathbf{u} \times \mathbf{v}|} = \pm \frac{-i + 7j + 3k}{\sqrt{(-1)^2 + (7)^2 + (3)^2}} = \pm \frac{-i + 7j + 3k}{\sqrt{59}}
\]

(c) The area of the parallelogram having \(\mathbf{u} \) and \(\mathbf{v} \) as adjacent edges.

Solution.

\[
|\mathbf{u} \times \mathbf{v}| = \sqrt{(-1)^2 + (7)^2 + (3)^2} = \sqrt{59}
\]

4. (12 pts) Find an equation for the plane that passes through the points \(P(1, -1, 2) \), \(Q(2, 3, -1) \) and \(R(-2, 0, 5) \).

Solution. The vector \(\mathbf{n} = \mathbf{PQ} \times \mathbf{PR} \) is perpendicular to the plane through \(P, Q, \) and \(R \).

\[
\mathbf{PQ} = \langle 2 - 1, 3 + 1, -1 - 2 \rangle = \langle 1, 4, -3 \rangle \quad \mathbf{PR} = \langle -2 - 1, 0 + 1, 5 - 2 \rangle = \langle -3, 1, 3 \rangle
\]

\[
\mathbf{n} = \mathbf{PQ} \times \mathbf{PR} = \begin{vmatrix}
i & j & k \\
1 & 4 & -3 \\
-3 & 1 & 3
\end{vmatrix} = (12 + 3)i - (3 - 9)j + (1 + 12)k = 15i + 6j + 13k
\]

Using \(P(1, -1, 2) \) as base point, and \(\mathbf{n} = 15i + 6j + 13k \) as normal direction, an equation for the plane through \(P, Q, \) and \(R \) is:

\[
15(x - 1) + 6(y + 1) + 13(z - 2) = 0
\]

\[
15x + 6y + 13z = 35
\]
5. (12 pts) Find parametric equations for the line which passes through the point P(–2,0,1) and is parallel to the line \(\frac{x}{4} = \frac{y + 1}{-3} = \frac{z - 2}{5} \). Then find the point where the line intersects the xy–plane.

Solution. The vector \(\mathbf{a} = \langle 4, -3, 5 \rangle \) is parallel to the line that we seek. Using this direction, and P(–2,0,1) as base point, parametric equations for the line are:

\[
\begin{align*}
x &= -2 + 4t \\
y &= 0 - 3t \\
z &= 1 + 5t
\end{align*}
\]

The point where this line intersects the xy–plane corresponds to \(z = 1 + 5t = 0 \), i.e. \(t = -\frac{1}{5} \). Thus the point of intersection with the xy–plane is:

\[
\left(-2 - \frac{4}{5}, 0 + \frac{3}{5}, 1 - \frac{5}{5} \right) = \left(-\frac{14}{5}, \frac{3}{5}, 0 \right)
\]

6. (6 pts each) Use the axes provided to sketch each of the following surfaces. In each case, identify (by name) the type of surface.

(a) \(x^2 + y^2 + 4z^2 = 4 \)

Solution. The surface is the ellipsoid

\[
\frac{x^2}{4} + \frac{y^2}{4} + z^2 = 1
\]

with vertices at \((\pm 2, 0, 0)\), \((0, \pm 2, 0)\), and \((0, 0, \pm 1)\).

(b) \(x + y = 1 \)

Solution. The surface is a plane which is perpendicular to the xy–plane. The x–intercept is \((1,0,0)\), and the y–intercept is \((0,1,0)\).
7. Let \(C \) be the space curve corresponding to the vector valued function \(\mathbf{r}(t) = \langle \cos(t), 2t, \sin(t) \rangle \).

(a) (6 pts) Describe the curve \(C \) (identify it by name and plot it in some reasonable fashion).

Solution.

The curve is a helix (spiral) on the surface of the cylinder \(x^2 + z^2 = 1 \).

(b) (6 pts) Find a unit vector which is tangent to the curve at the point corresponding to \(t = \pi \).

Solution.

\[
\frac{d\mathbf{r}}{dt} = \langle -\sin(t), 2, \cos(t) \rangle \quad \frac{ds}{dt} = \left| \frac{d\mathbf{r}}{dt} \right| = \sqrt{(-\sin(t))^2 + (2)^2 + (\cos(t))^2} = \sqrt{5}
\]

\[
\mathbf{T}(t) = \frac{d\mathbf{r}}{ds} = \frac{\langle -\sin(t), 2, \cos(t) \rangle}{\sqrt{5}}
\]

\[
\mathbf{T}(\pi) = \frac{\langle 0, 2, -1 \rangle}{\sqrt{5}}
\]

(c) (6 pts) Find the arc length of the segment of the curve corresponding to \(0 \leq t \leq \pi \).

Solution.

\[
L = \int_0^\pi \left(\frac{ds}{dt} \right) dt = \int_0^\pi \sqrt{5} \ dt = \sqrt{5} \pi \approx 7.02
\]

8. (8 pts) The rectangular coordinates of a point are \((1,1,\sqrt{2}) \). Find the cylindrical coordinates of the point and the spherical coordinates of the point.

Solution.

Cylindrical: \(r = \sqrt{(1)^2 + (1)^2} = \sqrt{2} \), \(\theta = \frac{\pi}{4} \), \(z = \sqrt{2} \)

\[
\left(\sqrt{2}, \frac{\pi}{4}, \sqrt{2} \right)
\]

Spherical: \(\rho = \sqrt{(1)^2 + (1)^2 + (\sqrt{2})^2} = \sqrt{4} = 2 \), \(\theta = \frac{\pi}{4} \), \(\phi = \frac{\pi}{4} \)

\[
\left(2, \frac{\pi}{4}, \frac{\pi}{4} \right)
\]