1. If \(s = (x_n)_{1 \leq n < \infty} \) is a convergent sequence in a metric space \((X,d)\), then \(s \) is a Cauchy sequence.

2. If a subset \(Y \) of a metric space \((X,d)\) is totally bounded, then \(Y \) is bounded (entirely contained in some sphere).

3. Prove that if \(s = (x_n)_{1 \leq n < \infty} \) is a sequence in a metric space \((X,d)\) then
 (a) If \(s \) converges then \(s \) has exactly one limit point.

 (b) If \(X \) is compact and \(s \) has exactly one limit point, then \(s \) converges.