1. If \(s = (x_n)_{1 \leq n < \infty} \) is a convergent sequence in a metric space \((X, d)\), then \(s \) is a Cauchy sequence.

P. Let \(\varepsilon > 0 \) be given. Since \(s \) converges to an element \(x \in X \), there is an integer \(N \) so that if \(n \geq N \), then \(\| x - x_n \| < \frac{\varepsilon}{2} \). Then if both \(n \) and \(m \) are \(\geq N \), we have \(\| x_n - x_m \| \leq \| x - x_n \| + \| x - x_m \| < \varepsilon \). Thus \(s \) is Cauchy.

2. If a subset \(Y \) of a metric space \((X, d)\) is totally bounded, then \(Y \) is bounded (entirely contained in some sphere).

P. Since \(Y \) is totally bounded, there exist points \(x_1, x_2, \ldots, x_n \) so that
\[
Y \subseteq \bigcup_{k=1}^{n} S_1(x_k).
\]
Let \(\gamma \) be the maximum of the distances \(d(x_1, x_k) \) for \(2 \leq k \leq n \), and let \(\eta = 1 + \gamma \). We claim that \(Y \subseteq S_\eta(x_1) \). In fact if \(y \in Y \), then \(d(y, x_i) < 1 \) for some \(i \) between 1 and \(n \). Then \(d(y, x_1) \leq d(y, x_i) + d(x_i, x_1) \leq 1 + \gamma = \eta \).

3. Prove that if \(s = (x_n)_{1 \leq n < \infty} \) is a sequence in a metric space \((X, d)\) then
 (a) If \(s \) converges then \(s \) has exactly one limit point.
 (b) If \(X \) is compact and \(s \) has exactly one limit point, then \(s \) converges.

P. (a) Suppose that \(s \) converges to \(x \). The \(x \) is clearly a limit point of \(s \).
Now suppose that \(y \) is any other point of \(X \), and that \(\eta = d(x, y) > 0 \). Then there exists an \(N \) so that for \(n \geq N \), \(d(x, x_n) < \frac{\eta}{3} \). Thus the sphere \(S_{\frac{\eta}{3}}(y) \) can contain no term \(x_n \) for \(n \geq N \), since if it did contain some such point \(x_n \), then \(d(x, y) \leq d(x, x_n) + d(x_n, y) < \frac{2\eta}{3} \) which would be a contradiction. This means that \(y \) is not a limit point of \(s \), and so \(s \) has exactly one limit point.

(b) Suppose that \(X \) is compact and that \(s \) has exactly one limit point \(x \). If \(s \) does not converge to \(x \), then there is an \(\varepsilon > 0 \) so that \(d(x_n, x) \geq \varepsilon \) infinitely often, say for the subsequence \(t = (x_{n_k})_{1 \leq k < \infty} \). Since \(X \) is compact, \(t \) has a limit point \(y \). Then \(y \) is a limit point of \(s \), but \(d(x, y) = \lim_{k \to \infty} d(x, x_{n_k}) \geq \varepsilon \), and so \(y \) is not equal to \(x \). Thus \(s \) has two limit points, which is a contradiction. This means that the sequence \(s \) must converge to \(x \).