1. Show that the sequence
\[f_n(x) = \frac{1}{1 + nx}, \quad 0 \leq x \leq 1 \] converges pointwise but not uniformly.

P. Clearly \(f_n(0) = 1 \) for all \(n \), so \(\lim_{n \to \infty} f_n(0) = 1 \). If \(x > 0 \), then \(nx \) tends to infinity, and therefore \(\lim_{n \to \infty} f_n(x) = 0 \). Thus the sequence converges pointwise. The convergence cannot be uniform since the limit function is
\[f(x) = \begin{cases} 1 & |x| = 0 \\ 0 & |x| \neq 0 \end{cases} \] and this is not continuous.

For a direct proof, note that \(f_n \left(\frac{1}{n} \right) = \frac{1}{2} \), and so \(\|f - f_n\|_{\max} \geq 0.5 \). Thus the sequence cannot converge uniformly.

2. Let \(A \subseteq \mathbb{R} \) (the real numbers), \(A \neq \emptyset \), and define
\[f_A(x) = \inf \{|x - a| : a \in A\}. \] Show that \(f_A \) is continuous on \(\mathbb{R} \).

Let \(x \) and \(y \) be fixed real numbers, and \(\varepsilon > 0 \). By definition there must be an element \(a \) in \(A \) so that \(|y - a| < f_A(y) + \varepsilon \).
Then \(|x - a| \leq |x - y| + |y - a| < |x - y| + f_A(y) + \varepsilon \). This means that \(f_A(x) \leq |x - y| + f_A(y) + \varepsilon \). Since this is true for all \(\varepsilon \), we must have \(f_A(x) \leq |x - y| + f_A(y) \), or \(f_A(x) - f_A(y) \leq |x - y| \).

By interchanging the role of \(x \) and \(y \), we see that
\[|f_A(x) - f_A(y)| \leq |x - y|, \] and so \(f_A \) is continuous (we can take \(\delta = \varepsilon \)).

3. Let \(A \) and \(B \) be subsets of \(\mathbb{R} \) and define
\[d(A,B) = \inf \{d(a,b) : a \in A, b \in B\} \]. Prove that if \(A \) and \(B \) are compact and \(d(A,B) = 0 \), then \(A \cap B \neq \emptyset \).

P. For each \(n \) we can find points \(a_n \in A \) and \(b_n \in B \) so that \(d(a_n, b_n) < \frac{1}{n} \).
Since \(A \) and \(B \) are compact, the sequences \(s = (a_n)_{1 \leq n < \infty} \) and \(t = (b_n)_{1 \leq n < \infty} \)
must have convergent subsequences. Thus (replacing s and t with subsequences if necessary) we may assume that s and t converge to a and b respectively. Since A and B are closed (being compact), we have $a \in A$ and $b \in B$. Then $d(a,b) = \lim_{n \to \infty} d(a_n,b_n) = 0$. This means that $a = b$, and so $A \cap B \neq \emptyset$.