Test 2 Study Guide for Certain types of Problems.

1. Given a set of vectors \(\{v_1, v_2, \ldots, v_k\} \) in \(\mathbb{R}^n \), determine if this is a linearly independent or linearly dependent set.

Solution. Make a matrix \(A \) using the vectors as columns. Form the system of equations \(Ax = x_1v_1 + x_2v_2 + \ldots + x_kv_k = 0 \). Put \([A : 0] \) in reduced row echelon form and determine if there is only the trivial solution to the system (in which case the \(v \)'s are independent) or infinitely many solutions (in which case the \(v \)'s are dependent).

2. Is a given vector \(w \) in \(\mathbb{R}^n \) a linear combination of a set of vectors \(\{v_1, v_2, \ldots, v_k\} \), or not?

Solution. Make a matrix \(A \) using the vectors as columns. Form the system of equations \(Ax = w \). Put \([A : w] \) in reduced row echelon form and determine if there are any solutions (in which case \(w \) is a linear combination) or not (in which case \(w \) is not a linear combination). To write \(w \) as a specific linear combination of the \(v \)'s, choose any desired solution to the system \(Ax = 0 \).

3. Does a given set \(\{v_1, v_2, \ldots, v_k\} \) of vectors span \(\mathbb{R}^n \)? (Here we must have \(k \geq n \), or the answer is definitely no).

Solution. Make a matrix \(A \) using the vectors as columns. Form the system of equations \(Ax = w \), where \(w \) is an arbitrary vector in \(\mathbb{R}^n \) (that is \(w \) is formed using parameters, i.e. letters). Put \([A : w] \) in reduced row echelon form and determine if there are solutions no matter what values are given to the parameters (in which case the set does span \(\mathbb{R}^n \)) or whether some values of the parameters produce a system with no solutions (in which case the set does not span \(\mathbb{R}^n \)).

4. Let \(A \) be a matrix. Find bases for, and the dimension of, the subspaces \(\text{Row}(A) \), \(\text{Col}(A) \), and \(\text{Nul}(A) \).

Solution. Put \(A \) in reduced row echelon form \(R \). The nonzero rows of \(R \) form a basis for \(\text{Row}(A) \), and so the dimension of \(\text{Row}(A) \) is the number of nonzero rows of \(R \), which is the number of leading 1’s.

To find a basis for \(\text{Col}(A) \), note the columns of \(R \) that contain leading 1’s. The corresponding columns of \(A \) form a basis for \(\text{Col}(A) \). Thus the dimension of \(\text{Col}(A) \) is also the number of leading 1’s, and so equals the dimension of \(\text{Row}(A) \). Be careful –
the columns of R containing leading 1’s are not in general a basis for $Col(A)$ (or even in that space).

To find a basis for $Nul(A)$, write down the parametric equations for the solutions by inspection from R, as usual. Then set each free parameter in turn to 1 and all others to 0. The resulting vectors form a basis for $Nul(A)$, and so the dimension of $Nul(A)$ is equal to the number of free parameters.

5. Find a basis for, and the dimension of the subspace W of R^n spanned by the vectors $\{v_1, v_2, \ldots, v_k\}$.

Solution1. Make a matrix A using the vectors as rows. Then $W = Row(A)$, and you proceed as in 4. to find a basis. This provides a simple basis for W that generally consists of vectors other than the v’s.

Solution2. Make a matrix A using the vectors as columns. Then $W = Col(A)$, and you proceed as in 4. to find a basis. This basis comes from the columns of A, that is it is a subset of the original set $\{v_1, v_2, \ldots, v_k\}$.

6. Find a basis for the subspace $\{v_1, v_2, \ldots, v_k\}^\perp$ consisting of all vectors orthogonal to the set $\{v_1, v_2, \ldots, v_k\}$.

Solution. Make a matrix A using the vectors as rows. By the nature of matrix multiplication, we see that $Ax = 0$ if and only if x is orthogonal to all rows of A, that is if and only if x is in $\{v_1, v_2, \ldots, v_k\}^\perp$. Thus $\{v_1, v_2, \ldots, v_k\}^\perp = Nul(A)$, and you proceed as in 4. to find a basis.