1. Let \(u = (1, 2, -1, 0, a) \) and \(v = (0, 2, 0, 3, -1) \) be two vectors in \(\mathbb{R}^5 \).
 a. (6 pts.) For what value of \(a \) are the vectors \(u \) and \(v \) orthogonal (perpendicular)?

 Solution.
 \[
 u \cdot v = 0 + 4 + 0 + 0 - a = 4 - a.
 \]
 Thus we need \(a = 4 \), for perpendicularity.

 b. (6 pts) If \(a = 1 \), what is the cosine of the angle between \(u \) and \(v \)?

 Solution.
 \[
 \|u\| = \sqrt{u \cdot u} = \sqrt{1+4+1+0+1} = \sqrt{7} \]
 \[
 \|v\| = \sqrt{v \cdot v} = \sqrt{0+4+0+9+1} = \sqrt{14} \]
 \[
 \cos(\theta) = \frac{u \cdot v}{\|u\| \|v\|} = \frac{3}{\sqrt{98}}
 \]

 c. (2 pts) How would you describe geometrically the set of all linear combinations of the vectors \(u \) and \(v \) in part b?

 Solution.
 A plane through the origin in \(\mathbb{R}^5 \)

2. (3 pts each) Let \(A = \begin{bmatrix} 1 & 2 & 0 \\ -3 & 2 & 1 \end{bmatrix} \), \(B = \begin{bmatrix} 3 & 1 \\ 0 & 2 \\ -2 & 1 \end{bmatrix} \). Compute the following matrices, or state that they cannot be computed.

 a. \(AB = \begin{bmatrix} 3 & 5 \\ -11 & 2 \end{bmatrix} \)
 b. \(BA = \begin{bmatrix} 0 & 8 & 1 \\ -6 & 4 & 2 \\ -5 & -2 & 1 \end{bmatrix} \)
 c. \(A + B \) cannot be computed.

 d. \(A+B^T = \begin{bmatrix} 4 & 2 & -2 \\ -2 & 4 & 2 \end{bmatrix} \)
3. a. (10 pts) Solve the following system of linear equations:

\[
\begin{align*}
 x_1 + 2x_2 + 4x_3 + 5x_4 &= 4 \\
 x_2 + 2x_3 + 2x_4 &= 1
\end{align*}
\]

Solution. The augmented matrix is

\[
\begin{bmatrix}
 1 & 2 & 4 & 5 & 4 \\
 0 & 1 & 2 & 2 & 1
\end{bmatrix} = \begin{bmatrix}
 1 & 0 & 0 & 1 & 2 \\
 0 & 1 & 2 & 2 & 1
\end{bmatrix}.
\]

Thus the parametric form of the solution is

\[
\begin{align*}
 x_1 &= 2 - s \\
 x_2 &= 1 - 2r - 2s \\
 x_3 &= r \\
 x_4 &= s
\end{align*}
\]

b. (10 pts) Suppose that the matrix

\[
\begin{bmatrix}
 2 & 1 & 2 & 2 & 1 \\
 1 & 3 & 4 & 2 &
\end{bmatrix}
\]

is the augmented matrix of a system of equations. Find conditions on the constant \(a \) under which the system has – no solutions, 1 solution, or infinitely many solutions.

Solution. There are three cases.

Case 1. \(a = 2 \). Then the second matrix becomes

\[
\begin{bmatrix}
 1 & 2 & 2 & 1 \\
 0 & 1 & 2 & 1
\end{bmatrix},
\]

and so there are infinitely many solutions.

Case 2. \(a = -2 \). Then the second matrix becomes

\[
\begin{bmatrix}
 1 & 2 & 2 & 1 \\
 0 & 1 & 2 & 1
\end{bmatrix},
\]

and so there are no solutions.

Case 3. \(a^2 \neq 4 \). Then the second matrix becomes

\[
\begin{bmatrix}
 1 & 2 & 2 & 1 \\
 0 & 1 & 2 & 1
\end{bmatrix},
\]

and so the solution is unique.
4. (15 pts) Find the inverse of the matrix
\[
\begin{pmatrix}
1 & 0 & 0 \\
0 & 1 & 2 \\
1 & 3 & 7
\end{pmatrix}
\]

Solution.
\[
\begin{pmatrix}
1 & 0 & 0 \\
0 & 1 & 2 \\
1 & 3 & 7
\end{pmatrix} \sim
\begin{pmatrix}
1 & 0 & 1 \\
0 & 1 & 2 \\
1 & 3 & 7
\end{pmatrix} \sim
\begin{pmatrix}
1 & 0 & 0 \\
0 & 1 & 2 \\
0 & 3 & 7
\end{pmatrix} \sim
\begin{pmatrix}
1 & 0 & 0 \\
0 & 1 & 2 \\
0 & 0 & -1
\end{pmatrix}
\]

Thus the inverse is
\[
\begin{pmatrix}
1 & 0 & 0 \\
0 & 1 & 2 \\
0 & 3 & -7
\end{pmatrix}
\]

5. a. (12 pts) Compute the determinant of the matrix
\[
\begin{pmatrix}
7 & 2 & 9 \\
1 & 0 & 3 \\
0 & 0 & 1
\end{pmatrix}
\]

Solution.
\[
\begin{vmatrix}
7 & 2 & 9 \\
1 & 0 & 3 \\
0 & 0 & 1
\end{vmatrix} = 7 \begin{vmatrix}
1 & 0 \\
0 & 1
\end{vmatrix} + 2 \begin{vmatrix}
1 & 3 \\
0 & 1
\end{vmatrix} + 9 \begin{vmatrix}
1 & 0 \\
0 & 3
\end{vmatrix} = 2 - 3 = -1
\]

b. (12 pts) Suppose that \(A\) and \(B\) are 3 by 3 matrices, and that \(\det(A) = 2, \ \det(B) = -1\). Find the determinant of the matrix \(3A^2B^{-1}\).

Solution. \(\det\left(3A^2B^{-1}\right) = 3^3 \frac{\det(A)^2}{\det(B)} = 27(-4) = -108\).
6. (3 pts each) Mark each of the following statements as either true (T) or false (F).
 a. A system of 2 equations in 4 unknowns cannot have a unique solution

 b. A system of 4 equations in 2 unknowns is inconsistent.

 c. If det(A)=3 and det(B) = 5, then det (A + B) = 8

 d. A homogeneous system of equations (constants all 0) must be consistent

 e. The set of all linear combinations of two vectors in \(\mathbb{R}^3 \) always forms a plane.

Solution. (a) T (b) F (c) F (d) T (e) F

7. (Extra Credit 10 pts) Suppose that a linear system of equations can be written as
 \[
 A \begin{bmatrix} x_1 \\ x_2 \\ x_3 \\ x_4 \end{bmatrix} = \begin{bmatrix} 1 \\ 0 \\ 1 \\ 1 \end{bmatrix}, \text{ and that } A^{-1} = \begin{bmatrix} 1 & 2 & 1 & 0 \\ -1 & 1 & 0 & 2 \\ 0 & 1 & 0 & 2 \\ 3 & 0 & 1 & 1 \end{bmatrix}. \text{ Find the solution vector } \begin{bmatrix} x_1 \\ x_2 \\ x_3 \\ x_4 \end{bmatrix}.
 \]

Solution. If \(Ax = b \), then \(x = A^{-1}b \). Thus
 \[
 \begin{bmatrix} x_1 \\ x_2 \\ x_3 \\ x_4 \end{bmatrix} = A^{-1} \begin{bmatrix} 1 \\ 0 \\ 1 \\ 1 \end{bmatrix} = \begin{bmatrix} 1 & 2 & 1 & 0 \\ -1 & 1 & 0 & 2 \\ 0 & 1 & 0 & 2 \\ 3 & 0 & 1 & 1 \end{bmatrix} \begin{bmatrix} 1 \\ 0 \\ 1 \\ 1 \end{bmatrix} = \begin{bmatrix} 2 \\ 1 \\ 2 \\ 5 \end{bmatrix}.
 \]

Similarly if \(b = \begin{bmatrix} 1 \\ 0 \\ -1 \end{bmatrix} \), then \(x = \begin{bmatrix} 2 \\ -3 \\ -2 \\ 3 \end{bmatrix} \).