ORTHOGONAL EXPANSIONS & PROJECTIONS
(Summary)

Definition. A set of vectors \(S = \{ \mathbf{u}_1, \mathbf{u}_2, \ldots, \mathbf{u}_p \} \) in \(\mathbb{R}^n \) is called an **orthogonal set** if each pair of vectors from the set is orthogonal, i.e. if \(\mathbf{u}_i \perp \mathbf{u}_j \) \((\mathbf{u}_i \cdot \mathbf{u}_j = 0) \) for \(i \neq j \).

Theorem. If \(S = \{ \mathbf{u}_1, \mathbf{u}_2, \ldots, \mathbf{u}_p \} \) is an orthogonal set of nonzero vectors in \(\mathbb{R}^n \) \((1 < p \leq n) \), then \(S \) is a linearly independent set and hence is a basis for the subspace \(W = \text{Span}(S) \).

Theorem. If \(S = \{ \mathbf{u}_1, \mathbf{u}_2, \ldots, \mathbf{u}_p \} \) is an orthogonal basis for a subspace \(W \) of \(\mathbb{R}^n \), then each vector \(\mathbf{y} \) in \(W \) can be expressed in terms of the basis vectors as follows:

\[
\mathbf{y} = (\frac{\mathbf{y} \cdot \mathbf{u}_1}{\mathbf{u}_1 \cdot \mathbf{u}_1}) \mathbf{u}_1 + (\frac{\mathbf{y} \cdot \mathbf{u}_2}{\mathbf{u}_2 \cdot \mathbf{u}_2}) \mathbf{u}_2 + \ldots + (\frac{\mathbf{y} \cdot \mathbf{u}_p}{\mathbf{u}_p \cdot \mathbf{u}_p}) \mathbf{u}_p
\]

Definition. A set of vectors \(\{ \mathbf{u}_1, \mathbf{u}_2, \ldots, \mathbf{u}_p \} \) in \(\mathbb{R}^n \) is called an **orthonormal set** if each pair of vectors from the set is orthogonal \((\mathbf{u}_i \cdot \mathbf{u}_j = 0 \text{ for } i \neq j) \) and each vector in the set has unit length \((\text{i.e. } \mathbf{u}_j \cdot \mathbf{u}_j = \| \mathbf{u}_j \|^2 = 1 \text{ for all } j) \). In Kronecker Delta Notation:

\[
\mathbf{u}_i \cdot \mathbf{u}_j = \delta_{ij} = \begin{cases} 1 & \text{if } i = j \\ 0 & \text{if } i \neq j \end{cases}
\]

Theorem. If \(S = \{ \mathbf{u}_1, \mathbf{u}_2, \ldots, \mathbf{u}_p \} \) is an orthonormal set, then \(S \) is a basis (called an **orthonormal basis** (ON basis)) for the subspace \(W = \text{Span}(S) \), and each vector \(\mathbf{y} \) in \(W \) can be expressed in terms of the basis vectors as follows:

\[
\mathbf{y} = (\mathbf{y} \cdot \mathbf{u}_1) \mathbf{u}_1 + (\mathbf{y} \cdot \mathbf{u}_2) \mathbf{u}_2 + \ldots + (\mathbf{y} \cdot \mathbf{u}_p) \mathbf{u}_p
\]
Theorem. If \(\hat{u}, \hat{y} \in \mathbb{R}^n \) (with \(\hat{u} \neq \hat{0} \)) then there is a scalar \(\alpha \) and a vector \(\hat{z} \) such that \(\hat{y} = \alpha \hat{u} + \hat{z} \) and \(\hat{z} = \hat{y} - \alpha \hat{u} \) is orthogonal to \(\hat{u} \):

\[
\alpha = \frac{\hat{y} \cdot \hat{u}}{\hat{u} \cdot \hat{u}}
\]

\[
\alpha \hat{u} = (\frac{\hat{y} \cdot \hat{u}}{\hat{u} \cdot \hat{u}}) \hat{u} = \text{orthogonal projection of } \hat{y} \text{ onto } \hat{u}
\]

\[
\hat{z} = \hat{y} - (\frac{\hat{y} \cdot \hat{u}}{\hat{u} \cdot \hat{u}}) \hat{u} = \text{component of } \hat{y} \text{ orthogonal to } \hat{u}
\]

Theorem. If \(S \) is any subset of \(\mathbb{R}^n \), then the set

\[
S^\perp = \{ \hat{z} \in \mathbb{R}^n \mid \hat{z} \cdot \hat{s} = 0 \text{ for all } \hat{s} \in S \}
\]

is a subspace of \(\mathbb{R}^n \) (called the orthogonal complement of \(S \)).

Theorem. Let \(W \) be a subspace of \(\mathbb{R}^n \). Then each \(\hat{y} \in \mathbb{R}^n \) can be written (uniquely) in the form

\[
\hat{y} = \hat{w} + \hat{z}
\]

where \(\hat{w} \in W \) and \(\hat{z} \in W^\perp \). The vector \(\hat{w} \) (commonly denoted by \(\text{proj}_W \hat{y} \)) is referred as the orthogonal projection of \(\hat{y} \) onto \(W \). If \(\{ \hat{u}_1, \hat{u}_2, \ldots, \hat{u}_p \} \) is an orthogonal basis for \(W \), then

\[
\text{proj}_W \hat{y} = (\hat{y} \cdot \hat{u}_1) \hat{u}_1 + (\hat{y} \cdot \hat{u}_2) \hat{u}_2 + \ldots + (\hat{y} \cdot \hat{u}_p) \hat{u}_p
\]

If, in addition, \(\hat{u}_j \cdot \hat{u}_j = ||\hat{u}_j||^2 = 1 \) for each \(j \) (i.e. \(\{ \hat{u}_1, \hat{u}_2, \ldots, \hat{u}_p \} \) is an ON basis for \(W \)) then

\[
\text{proj}_W \hat{y} = (\hat{y} \cdot \hat{u}_1) \hat{u}_1 + (\hat{y} \cdot \hat{u}_2) \hat{u}_2 + \ldots + (\hat{y} \cdot \hat{u}_p) \hat{u}_p
\]