Some Formulas:

\[y = \log_a x \quad \Leftrightarrow \quad x = a^y \quad \ln(x) = \log_e x \quad (\text{where } e \approx 2.71828...) \quad \log_a x = \frac{\ln x}{\ln a} \]

1. (15 pts) Use the axes provided to sketch the curve whose parametric equations are: \(x = 2 \cos(t), \) \(y = -2 \sin(t), \) where \(0 \leq t \leq \pi. \) Label important points on your graph, and indicate with an arrow the direction in which the curve is traced as the parameter increases.

Solution.

The curve is the lower half of the circle \(x^2 + y^2 = 4. \)

As the parameter \(t \) increases from 0 to \(\pi, \) the point \((x,y) \) traverses the semi-circle in the clockwise direction from the point \((2,0) \) to the point \((-2,0). \)

2. Find the exact value of each of the following: (5 pts each)

(a) \(\log_{10}25 + \log_{10}8 - \log_{10}2 \)

Solution.

\[
\log_{10}25 + \log_{10}8 - \log_{10}2 = \log_{10}\left(\frac{25 \times 8}{2}\right) = \log_{10}(100) = \log_{10}(10^2) = 2
\]

(b) \(e^{2\ln(2)} \)

Solution.

\[
e^{2\ln(2)} = e^{\ln(2^2)} = e^{\ln(4)} = 4
\]
3. (10 pts) Use the axes provided to graph the function \(y = -\ln(x+1) \). Label the axes and important points (such as intercepts) on your graph.

Solution.

Start with the graph of \(y = \ln(x) \), then shift it one unit to the left and reflect (flip) it about the \(x \)-axis.

4. Under warm and damp conditions a certain mosquito population is known to double in size every 6 hours. Suppose that there are initially 10 mosquitoes in the population.

(a) (5 pts) What is the size of the population after 24 hours?

Solution.

After 24 hours the population is \(10 \times 2^4 = 160 \) (population doubles 4 times in 24 hours).

(b) (5 pts) Find a formula for the size of the population after \(t \) hours.

Solution.

The population doubles every 6 hours. Therefore, after \(t \) hours, the population is \(P(t) = 10 \times 2^{\frac{t}{6}} \).

(c) (5 pts) How long (hours) will it take for the population to reach 1000 mosquitoes? Express your answer in exact form (as a logarithm), then use your calculator to produce a decimal approximation.

Solution.

Solve the equation \(P(t) = 1000 \) for \(t \).

This leads to \(10 \times 2^{\frac{t}{6}} = 1000 \), so \(2^{\frac{t}{6}} = 100 \) and \(\frac{t}{6} = \log_2 100 = \frac{\ln(100)}{\ln(2)} \).

Thus \(t = 6 \log_2(100) = 6 \frac{\ln(100)}{\ln(2)} \approx 39.86 \) hours.