Part I. The problems on this part are of multiple-choice type. Circle the correct answer.

1. Let \(A \) be the area of the region under the graph of \(y = 25 - x^2 \) for \(0 \leq x \leq 4 \). Find the value of the approximation to \(A \) obtained by using four rectangles of equal width and right endpoints (see figure).

 \[\text{A) 65 B) 68 C) 70 D) 72 E) 75 F) 78 G) 80 H) 82} \]

Solution. The right endpoint approximation with \(n = 4 \) is:

\[
A \approx [(25-1)+(25-4)+(25-9)+(25-16)](1) = 24 + 21 + 16 + 9 = 70
\]

The correct answer is C.

2. Find the exact value of the area of the region under the graph of \(y = 25 - x^2 \) for \(0 \leq x \leq 4 \).

 \[\text{A) 65 B) 67 \frac{1}{2} C) 70 D) 72 \frac{1}{3} E) 75 F) 78 \frac{2}{3} G) 80 H) 82 \frac{1}{2} } \]

Solution. The exact value of the area is

\[
A = \int_0^4 (25 - x^2)dx = (25x - \frac{x^3}{3}) \bigg|_0^4 = 100 - \frac{64}{3} = \frac{236}{3}.
\]

The correct answer is F.

3. Find the value of the integral \(\int_{-2}^1 |x + 1| \, dx \).

 \[\text{A) -1 B) 0 C) 1 D) } \]

 \[\text{E) -} \frac{1}{2} \text{ F) } \frac{1}{2} \text{ G) } \frac{3}{2} \text{ H) } \frac{5}{2} \]

Solution. The easiest way to evaluate this integral is to interpret it in terms of areas (see figure):

\[
\int_{-2}^1 |x + 1| \, dx = A_1 + A_2 = \frac{1}{2} + 2 = \frac{5}{2}
\]

The correct answer is H.
4. If \(\int_0^2 f(x) \, dx = 3 \) and \(\int_0^2 g(x) \, dx = -2 \), what is the value of \(\int_0^2 [2f(x) - 3g(x)] \, dx \)?

A) 2 B) -2 C) 3 D) -3
E) 6 F) -6 G) 12 H) -12

Solution. From the linearity of integration we have:

\[
\int_0^2 [2f(x) - 3g(x)] \, dx = 2\int_0^2 f(x) \, dx - 3\int_0^2 g(x) \, dx = 2(3) - 3(-2) = 12
\]

The correct answer is G.

Part II. The remaining problems are to be worked out in detail. You must show all your work on this paper to receive full credit.

5. A particle is moving along a line with velocity function \(v(t) = 4 - 2t \) (meters per second). Find the total distance (back and forth) traveled during the time interval \(0 \leq t \leq 6 \).

Solution. The total distance (back and forth) is given by:

\[
\int_0^6 |v(t)| \, dt = \int_0^2 (4 - 2t) \, dt + \int_2^6 (2t - 4) \, dt = (4t - t^2) \bigg|_0^2 + (t^2 - 4t) \bigg|_2^6 = (8 - 4) + [(36 - 24) - (4 - 8)] = 20
\]

6. Use the Substitution Rule (Change of Variable) to evaluate each of the following integrals. All steps must be shown to receive credit.

(a) \(\int \frac{x^2}{\sqrt{2 + x^3}} \, dx \)

(b) \(\int \frac{1}{(2x + 1)^2} \, dx \)
Solutions.

(a) Let \(u = 2 + x^3 \) (\(\therefore \ du = 3x^2\,dx \)).

Then \(\int \frac{x^2}{\sqrt{2 + x^3}} \, dx = \frac{1}{3} \int \frac{1}{\sqrt{2 + x^3}} \, 3x^2\,dx = \frac{1}{3} \int \frac{1}{\sqrt{u}} \, du = \frac{1}{3} \frac{1}{\frac{3}{2}} \sqrt{2 + x^3} + C = \frac{2}{3} \sqrt{2 + x^3} + C \).

(b) Let \(u = 2x + 1 \) (\(\therefore \ du = 2dx \)).

Then \(\int \frac{1}{(2x + 1)^2} \, dx = \frac{1}{2} \int \frac{1}{u^2} \, du = \frac{1}{2} \left(-\frac{1}{u}\right) + C = -\frac{1}{2} \frac{1}{2x + 1} + C \).

7. (8 pts) Find the derivative of the function \(g(x) = \int_0^x \frac{1}{\sqrt{1 + t^4}} \, dt \).

Solution. Using the Fundamental Theorem of Calculus (Part 1), together with the Chain Rule:

\[
g'(x) = \frac{d}{dx} \left[\int_0^x \sqrt{1 + t^4} \, dt \right] = \sqrt{1 + (\sqrt{x})^4} \frac{d}{dx} \sqrt{x} = \sqrt{1 + x^2} \frac{1}{2\sqrt{x}} = \frac{1}{2} \frac{1}{x} \sqrt{1 + x^2}
\]

8. Use a change of variable, together with a formula from the table below, to find the exact value of the integral \(\int_0^{\pi/2} \cos(x) \sqrt{4 + \sin^2 x} \, dx \). Show all steps. A numerical answer alone will receive no credit.

Solution. Let \(u = \sin(x) \) (\(\therefore \ du = \cos(x)\,dx \), \(u = 0 \) when \(x = 0 \), and \(u = 1 \) when \(x = \frac{\pi}{2} \)).

Then \(\int_0^{\pi/2} \cos(x) \sqrt{4 + \sin^2 x} \, dx = \int_0^1 \sqrt{4 + u^2} \, du = \left[\frac{u}{2} \sqrt{4 + u^2} + \frac{4}{2} \ln\left(u + \sqrt{4 + u^2}\right) \right]_0^1 \)

\[
= \left[\frac{1}{2} \sqrt{5} + 2 \ln(1 + \sqrt{5}) \right] - \left[0 + 2 \ln(2) \right] = \frac{1}{2} \sqrt{5} + 2 \ln\left(\frac{1 + \sqrt{5}}{2}\right)
\]

\[
\begin{align*}
\int & \frac{\sqrt{a^2 + u^2}}{u} \, du = \sqrt{a^2 + u^2} - a \ln \left| \frac{a + \sqrt{a^2 + u^2}}{u} \right| + C \\
\int & \frac{a^2 + u^2}{u} \, du = \frac{u}{2} \sqrt{a^2 + u^2} + \frac{4}{2} \ln\left(u + \sqrt{a^2 + u^2}\right) + C \\
\int & \frac{u^2}{\sqrt{a^2 + u^2}} \, du = -\frac{\sqrt{a^2 + u^2}}{u} + \ln\left(u + \sqrt{a^2 + u^2}\right) + C
\end{align*}
\]
9. (12 pts) Find the exact value of the integral \(\int_0^1 xe^{2x} \, dx \). Show all steps. A numerical answer alone will receive no credit.

Solution. Use integration by parts with \(u = x \) and \(dv = e^{2x} \, dx \left(\therefore du = dx \text{ and } v = \frac{1}{2} e^{2x} \right) \).

\[
\int_0^1 xe^{2x} \, dx = \frac{1}{2} xe^{2x} \bigg|_0^1 - \frac{1}{2} \int_0^1 e^{2x} \, dx = \frac{1}{2} xe^{2x} \bigg|_0^1 - \frac{1}{4} e^{2x} \bigg|_0^1 = \frac{1}{2}(e^2 - 0) - \frac{1}{4}(e^2 - 1) = \frac{e^2 + 1}{4}
\]

10. (6 pts) Write out the form of the partial fraction decomposition of \(f(x) = \frac{x^2 - 3x + 4}{x^3(x + 2)(x^2 + 4)} \). DO NOT ATTEMPT TO FIND THE UNKNOWN CONSTANTS.

Solution. The form of the decomposition is:

\[
\frac{x^2 - 3x + 4}{x^3(x + 2)(x^2 + 4)} = \frac{A}{x} + \frac{B}{x^2} + \frac{C}{x + 2} + \frac{D}{x^2 + 4}
\]

11. (12 pts) Use partial fractions to evaluate the integral \(\int \frac{2 + x}{(x - 1)(x + 3)} \, dx \).

Solution. The integrand has a partial fraction decomposition of the form

\[
\frac{2 + x}{(x - 1)(x + 3)} = \frac{A}{x - 1} + \frac{B}{x + 3}
\]

where \(x + 2 = A(x + 3) + B(x - 1) = (A + B)x + (3A - B) \). It follows that \(A + B = 1 \) and \(3A - B = 2 \); thus \(A = \frac{3}{4} \) and \(B = \frac{1}{4} \). The integral can then be calculated as follows:

\[
\int \frac{2 + x}{(x - 1)(x + 3)} \, dx = \frac{3}{4} \int \frac{1}{x - 1} \, dx + \frac{1}{4} \int \frac{1}{x + 3} \, dx = \frac{3}{4} \ln|x - 1| + \frac{1}{4} \ln|x + 3| + C
\]