Part I. The problems on this part are of multiple-choice type. Circle the correct answer. (5 pts each)

1. Describe the surface in \mathbb{R}^3 that is represented by the equation $x^2 + z^2 = 9$.

 A) horizontal plane
 B) sphere
 C) cylinder around the x-axis
 D) vertical plane
 E) cone
 F) cylinder around the y-axis

Solution. The equation $x^2 + z^2 = 9$ places no restriction on the value of y. In the xz-plane it represents a circle of radius 3 with center at the origin. In \mathbb{R}^3 it represents a cylinder of radius 3 around the y-axis. The correct answer is F.

2. Find the work done by a constant force $\mathbf{F} = i + 2j + 2k$ (magnitude = 3 N) in moving an object along the z-axis from the origin to the point (0,0,5) (distance in meters).

 A) 5 J
 B) 6 J
 C) 9 J
 D) 10 J
 E) 12 J
 F) 15 J

Solution. The work is done by the scalar component of the force in the direction of the motion, i.e. in the direction of the displacement vector $\mathbf{d} = 5k$. Thus $W = (2)|\mathbf{d}| = (2)(5) = 10$, or (equivalently) $W = \mathbf{F} \cdot \mathbf{d} = (1)(0) + (2)(0) + (2)(5) = 10$. The correct answer is D.

3. The domain of the function $f(x,y) = \frac{\ln(x^2+y^2)}{\sqrt{x}}$ is the set of points (x,y) for which:

 A) $x > 0$
 B) $y > 0$
 C) $x > 0$ and $y > 0$
 D) $x \geq 0$
 E) $y \geq 0$
 F) $x < 0$ and $y < 0$

Solution. We must have $x > 0$ because of \sqrt{x} appearing in the denominator. This ensures that $\ln(x^2+y^2)$ is defined (since $x^2+y^2 > 0$), so there are no further restrictions. The correct answer is A.

4. Find the limit $\lim_{(x,y) \to (0,0)} \frac{x-y}{x+y}$ if it exists.

 A) 0
 B) 1
 C) -1
 D) ∞
 E) $-\infty$
 F) Does not exist

Solution. Along the x-axis ($y = 0$) we have $\lim_{(x,y) \to (0,0)} \frac{x-y}{x+y} = \lim_{x \to 0} \frac{x}{x} = 1$, and along the y-axis ($x = 0$) we have $\lim_{(x,y) \to (0,0)} \frac{x-y}{x+y} = \lim_{y \to 0} \frac{-y}{y} = -1$. Since these directional limits have different values, the two-dimensional limit $\lim_{(x,y) \to (0,0)} \frac{x-y}{x+y}$ does not exist. The correct answer is F.
5. The various parts of this problem all refer to the points K(1,1,1), L(1,2,–1), and M(3,0,2) in \mathbb{R}^3.

(a) (8 pts) Find (to the nearest degree) the angle between the vectors \overrightarrow{KL} and \overrightarrow{KM}.

Solution. $\overrightarrow{KL} = \langle 0, 1, -2 \rangle$ and $\overrightarrow{KM} = \langle 2, -1, 1 \rangle$; thus the angle between these vectors is given by

$$
\cos \theta = \frac{\overrightarrow{KL} \cdot \overrightarrow{KM}}{|\overrightarrow{KL}| |\overrightarrow{KM}|} = \frac{(0)(2) + (1)(-1) + (-2)(1)}{\sqrt{(0)^2 + (1)^2 + (-2)^2} \sqrt{(2)^2 + (-1)^2 + (1)^2}} = -\frac{3}{\sqrt{5} \sqrt{6}}
$$

$$
\theta = \cos^{-1} \left(-\frac{3}{\sqrt{30}} \right) \approx \cos^{-1} (-0.5477) \approx 123^\circ
$$

(b) (8 pts) Find a unit vector that is perpendicular to the plane determined by K, L, and M.

Solution. We obtain a vector perpendicular to the plane by taking the cross product of \overrightarrow{KL} and \overrightarrow{KM}.

$$
\overrightarrow{KL} \times \overrightarrow{KM} = \begin{vmatrix} i & j & k \\ 0 & 1 & -2 \\ 2 & -1 & 1 \end{vmatrix} = (1 - 2)i - (0 + 4)j + (0 - 2)k = -i - 4j - 2k
$$

There are two possibilities for a unit vector perpendicular to the plane:

$$
\mathbf{n} = \pm \frac{\overrightarrow{KL} \times \overrightarrow{KM}}{|\overrightarrow{KL} \times \overrightarrow{KM}|} = \pm \frac{-i - 4j - 2k}{\sqrt{21}}
$$

(c) (6 pts) Find the area of the triangle having K, L, and M as its vertices.

Solution. The area of the triangle is one-half the length of the cross product $\overrightarrow{KL} \times \overrightarrow{KM}$.

$$
A = \frac{1}{2} |\overrightarrow{KL} \times \overrightarrow{KM}| = \frac{1}{2} \sqrt{21} \approx 2.29
$$
6. This problem is concerned with the line \(L \) that passes through the point \(P(1,-1,2) \) and is parallel to the vector \(\mathbf{u} = 3\mathbf{i} - \mathbf{j} - 2\mathbf{k} \).

(a) (6 pts) Find parametric equations for the line \(L \).

Solution. Using \(P(1,-1,2) \) as the base point, and \(\mathbf{u} = 3\mathbf{i} - \mathbf{j} - 2\mathbf{k} \) as the direction, the line \(L \) has parametric equations

\[
\begin{align*}
x &= 1 + 3t \\
y &= -1 - t \\
z &= 2 - 2t
\end{align*}
\]

(b) (6 pts) Find the coordinates of the point where the line \(L \) intersects the plane \(x + z = 1 \).

Solution. The value of \(t \) corresponding to \(x + z = 1 \) is

\[
(1 + 3t) + (2 - 2t) = 1 \quad \text{and} \quad (3t - 2t) + (1 + 2) = 1 \quad \Rightarrow \quad t = -2
\]

and, substituting this \((t = -2) \) back into the parametric equations, we obtain \(x = -5, y = 1, z = 6 \). Thus the point of intersection is \((-5,1,6) \).

(c) (6 pts) Find an equation for the plane that is perpendicular to \(L \) and passes through \(P(1,-1,2) \).

Solution. Using \(P(1,-1,2) \) as base point, and \(\mathbf{u} = 3\mathbf{i} - \mathbf{j} - 2\mathbf{k} \) as the normal direction, the equation of the plane is given by

\[
3(x - 1) - (y + 1) - 2(z - 2) = 0 \quad \text{or} \quad 3x - y - 2z = 0
\]

7. (6 pts) Use the axes provided to sketch the graph of the surface with equation \(z = \sqrt{x^2 + y^2} \).

What type (name) of surface is it?

Solution. Since \(z \geq 0 \), the surface lies above the xy-plane. The trace of the surface in a horizontal plane \(z = k \) \((k > 0)\) is the circle \(x^2 + y^2 = k^2 \).

The surface is a cone with vertex at the origin and central axis along the z-axis.
8. This problem is concerned with the space curve C with vector equation \(r(t) = \langle 2 \cos(t), 2 \sin(t), t \rangle \).

(a) (6 pts) Use the axes provided to describe and sketch the curve C. What type (name) of curve is it?

Solution. Note that all of the points on the curve satisfy
\[
x^2 + y^2 = 4 \cos^2 t + 4 \sin^2 t = 4
\]
Thus the curve lies on the surface of the cylinder \(x^2 + y^2 = 4 \), with the \(z \)-coordinate increasing as \(t \) increases (\(z = t \)).

The curve is a *helix*, starting at the point \((2,0,0)\) (when \(t = 0 \)) and climbing up the outside of the cylinder \(x^2 + y^2 = 4 \).

(b) (6 pts) Find a unit vector which is tangent to C at the point corresponding to \(t = \frac{\pi}{3} \).

Solution. The unit tangent vector is \(T(t) = \frac{v(t)}{|v(t)|} \) where \(v(t) = r'(t) = \langle -2 \sin(t), 2 \cos(t), 1 \rangle \), and
\[
|v(t)| = \sqrt{4 \sin^2 t + 4 \cos^2 t + 1} = \sqrt{5}.
\]
Thus, for \(t = \frac{\pi}{3} \) we have
\[
T\left(\frac{\pi}{3}\right) = \frac{\langle -2(\frac{\sqrt{3}}{2}), 2(\frac{1}{2}), 1 \rangle}{\sqrt{5}} = \frac{\langle -\sqrt{3}, 1, 1 \rangle}{\sqrt{5}}
\]

(c) (6 pts) Find the arc length of the segment of the curve C corresponding to \(0 \leq t \leq \pi \).

Solution. We get arc length by integrating \(\frac{ds}{dt} = |v(t)| = \sqrt{5} \); thus
\[
L = \int_0^\pi \sqrt{5} \, dt = \sqrt{5} \pi \approx 7.02
\]
9. (8 pts) Suppose the function $T(x,y) = y - x^2$ represents the temperature (in degrees centigrade) at the point (x,y) in a flat metal plate. Use the axes provided to sketch a contour map for T showing the isotherms (level curves) corresponding to $T = 0$, $T = -1$, and $T = 2$.

Solution. The level curve corresponding to $T = 0$ is

$$y - x^2 = 0 \quad \text{or} \quad y = x^2$$

Similarly, the level curves corresponding to $T = -1$ and $T = 2$ are

$$y = x^2 - 1 \quad \text{and} \quad y = x^2 + 2$$

10. (8 pts) Find the velocity vector and position vectors of a particle, given that the acceleration vector is $a(t) = \mathbf{i} - \mathbf{k}$ and the initial velocity and position are $v(0) = \mathbf{i} + \mathbf{j}$ and $r(0) = \mathbf{0}$.

Solution. Velocity is the antiderivative of acceleration:

$$v(t) = t\mathbf{i} - tk + C_1 \quad \text{where (setting } t = 0) \quad C_1 = v(0) = \mathbf{i} + \mathbf{j}$$

$$v(t) = (t + 1)\mathbf{i} + \mathbf{j} - tk$$

Position is the antiderivative of velocity:

$$r(t) = (\frac{1}{2} t^2 + t)\mathbf{i} + tj - \frac{1}{2} t^2\mathbf{k} + C_2 \quad \text{where} \quad C_2 = r(0) = \mathbf{0}$$

$$r(t) = (\frac{1}{2} t^2 + t)\mathbf{i} + tj - \frac{1}{2} t^2\mathbf{k}$$