CS 121 Engineering Computation Lab
Lab 2

Bruce Char
Department of Computer Science
Drexel University
Fall 2010

©By the author. All rights reserved. Permission is given to CS121 Fall 2009 staff and students to use and reproduce these notes for their own use.
Recap of Initial Cycle

• Lab 1
 – Has anyone not taken? Please contact your instructor
 – Material covered in Lab 1 (Maple arithmetic, use of palettes, equation solving, and plotting) is critical to future labs
 – General rule – we solve equations and plot (right hand side) expressions

• Quiz 1
 – Has anyone not taken either the regular or makeup version?
 – Who utilized the CLC?
 – Who found the “hot potato” slides useful?

• Pre-Lab Quizlet
 – Any questions/issues?
Some Administrative Notes and Guidelines

• Please attend your regularly scheduled section
• Be sure to check lab and quiz results on bbVista as soon as posted and report issues to your instructor immediately. It is important to resolve issues as soon as they occur.
• The bbVista Discussion Board is now available
 – Use it to share experiences
 – Board is being monitored twice daily by assistants
• Quiz support
 – Try to take the quiz prior to Wednesday afternoon
 – Please bring your laptop to the CLC for quiz assistance
 – You may take the quiz multiple times; only your highest result will count
• Please contact your individual instructor with any questions or problems
 – Do NOT send emails to the cs12x_instructors mailbox!
Some Administrative Notes and Guidelines

• Monday Students

 – Please attend your Columbus Day makeup sessions on Monday (10/18) or Tuesday (10/19) at 6PM as assigned in confirmation email

 – Be sure to attend in the room you were assigned in that email

 – If you have not yet arranged for a makeup lab, send your name, section and availability (Monday and/or Tuesday – 6PM) to augenbdh@cs.drexel.edu
Lab 2 Overview

• Based on materials from Chapters 3, 4 and 5
 – Chapter 3: Text (word) processing
 – Chapter 4: Labels and assignments
 – Chapter 5: Building scripts

• Part 1
 – Apply a given script to solve 3 versions of the same problem (with different values for parameters)

• Part 2
 – Develop your own script and apply it to solve different versions of a given problem
Discussion of Lab 2 Concepts

• What is a script?
 – A script is a sequence of operations. Usually, the later operations use the results of earlier ones
 – Labels or assignments (to be discussed shortly) are used to make the references convenient

• How are scripts useful?
 – Scripts are useful when you expect to solve a series of similar problems
 – Reuse: cut, paste, edit, re-execute
Pointers on Script Development

1. Determine how to do the problem before creating the script
2. Find which parameters can change and place them at the beginning of the script
3. As you create the general script, use parameters as opposed to fixed values in the body of the script
4. Use text to document the beginning and end of the script

Our demo will illustrate these ideas using the sheep population problem from Lab 1.
Other Concepts Used in Lab 2

• Script development in Maple encompasses a variety of concepts:
 – Text (word processing) features of Maple for script documentation and equation writing
 – Use of labels and assignments to remember the results for future use
 – Equation manipulation and solving (from Lab 1)
 – Script development using Maple’s clickable interface versus textual commands
Text (Word Processing) Capabilities of Maple

- Ordinary entry is 2D Maple (math) mode
- Can also enter text. Once in text mode, can use word processing features such as boldface, italics, center-justification, etc.
- Control-T => to text mode (or click on “text” button)
- Control-R => to math mode (or click on “math” button)
 - Use command instead of control with Mac computers
- Greek letters – via Greek symbols palette
- Subscripts (eg. X_1)
 - use shift + underscore to type a subscript
 - right arrow to get back to next term
- Demo: the equation $m = \frac{y_2 - y_1}{x_2 - x_1}$ is the slope of a line
Use of Labels and Assignments

• Hitting enter (return) gives a numerical label (on far right)
• Control-L (command-L) lets you refer to a results by its label
• Assignment: name := expression (stores the result of the expression in the variable “name”)
• Note the difference between := (assignment) and = (equation – equality)
• Demo:
 – ex1 := 6^2 + 8^2 -> 100 (1)
 – sqrt(ex1) -> 10 (2)
 – sqrt((1)) -> 10 (3)
 – Note: label entered in dialog box created from Control-L
Equation Solving Consideration

- Limiting solutions to feasible values
- Ex. Given the area of the circle → find the corresponding radius – Demo

 - Area := 25*Pi # sets value for area

 - Area = Pi * radius ^2 (rt.click – solve) → radius = 5 and -5

 - Area = Pi * radius ^2, radius>0 (rt. Click - solve) → radius = 5
Maple’s Clickable vs. Textual Interface

• So far, we have focused on Maple’s clickable interface features to assign variables, solve equations and plot expressions
 – Use of expression and common symbols palettes
 – Right click on equations, expressions to solve and plot (plot builder allows for setting of variety of parameters and options)

• The Assignment operator (:=) is our 1st look at using Maple’s textual command interface
 – As opposed to right clicking on a value and assigning a name

• Later, we will notice that scripts become more general and flexible when we use textual commands
Demo: Script Development Using Lab 1 Sheep Population Example

- In Lab 1: \(N = \frac{220}{1 + 10 \times 0.83^t} \), where breeding group is 20 sheep and N is population after t years
 - stable without supervision at 80 sheep
- When breeding group is 33 => \(N = \frac{330}{1 + 10 \times 0.79^t} \),
 - stable at 85 sheep
- When breeding group is 45 => \(N = \frac{450}{1 + 10 \times 0.63^t} \)
 - stable at 90 sheep
- Problem – develop a Maple script to:
 - Graph N versus t
 - t (# of years) for stability to occur
 - Max # of sheep supported
Demo: Sheep Population Model

• Which parameters will vary?
 – Let general equation be $N=P/(1+10*c^t)$ where parameter P and c vary. Also, the stable size (s) varies

• Script

Place parameters at start of script – here

220 [assign to a name] \rightarrow P
0.83 [assign to a name] \rightarrow c
80 [assign to a name] \rightarrow N
Sheep Population Script – Continued

Place constant part of script here

\[\frac{P}{1+10^c^t} \] [assign to a name] \(\rightarrow \) sheepexp

sheepexp [return] \(\rightarrow \) [click on blue expression \(\rightarrow \) plots / plot builder – set range from 0 to 60, options – vertical N from 0 to P+20 \(\rightarrow \) plot of model]

\[N=\text{sheepexp} \] [return] \(\rightarrow \) [click on blue equation – solve] \(\rightarrow \) \(t=9.3 \ldots \ldots \)

sheepexp \(\rightarrow \) [limit as t goes to infinity – use expression palette] \(\rightarrow \) 220

End of script
To Re-execute the Script

• Change parameters P, c, and s
• Highlight script
• Copy (control-c) and paste in new worksheet (File / New / Document Mode) + (control-v)
• Edit -> re-execute
• Demo with P=330, c=0.79, N=85
• End of Demo
What To Do Now

• Sign verification sheet (print neatly) with partners
• Bring up Lab 2 description from course website
• Launch Maple 14 session
• Work as a team to solve the problems as per the lab description
 – *Be sure to “trade” scripts with a teammate in Part 1 before running version 3*
• At end of lab:
 – get verification sheet signed (as team completes each part)
 – SAVE your worksheet (email to team or save to bbVista)
Quiz 2 Activities

• Quiz 2 will be released on Friday (10/15) at 6pm
 – Deadline: Friday (10/22) at 4:30pm
 – Makeup quiz: Friday (10/22 at 6PM) through Sunday (10/24 at 11PM)
 • 20% penalty
• Pre-lab quizlet for Lab 3
 – released on Thursday (10/21 at Noon) through Monday (10/25 at 8AM)
• Be sure to visit the CLC for quiz assistance (10/18-10/22)
• Monday students – please attend your Columbus Day makeup sessions as confirmed (Monday, 10/18 and Tuesday, 10/19) – please attend in assigned lab room!!!