CS122 Engineering Computation Lab
Lab 2

Bruce Char
Department of Computer Science
Drexel University
Winter 2011
Review of Lab 1 Cycle

• Lab 1 – pre lab quizlet, lab 1 and quiz 1 completed along with pre lab 2 quizlet
 – Quiz grades to be issued this week
 – More usage of CLC noticed than in cs121
• Initial lab completion session held on 1/18 – about 35 attendees
• Major Lab 1 concepts to remember
 – Use of code edit regions to develop, test and debug scripts
 – Use of user defined functions to facilitate script development
 – Troubleshooting / debugging techniques (including Maple’s print functions)
Administrative Notes

• Please contact your individual instructors with questions and problems
• CLC (room 147 UC) will be staffed at same times as for cs121 in Fall (odd weeks)
• In order to be eligible for a lab completion session, please see your instructor at the end of the lab period
• In order to be eligible for a makeup lab session, you must contact your instructor for permission as soon as you miss your regularly scheduled lab
Lab 2 Overview

• Based on materials from Chapter 12 and 13 readings
 – More practice with user defined functions
 • We define them and then invoke them to draw things.
 • We chain functions together to get more complicated drawings.
 – Using Maple tables (chapter 12) to store a collection of data
 • How to initialize them
 • How to get a program to enter values into a table
 • How to use all the values you’ve put into a table, in a plot
 – Repetitive action “for” loops – chapter 13
 • Use an index variable to specify where an item is put in a table
 • Use a loop to change variables repetitively. In order to do this successfully, the variables must be initialized in code executed before the loop starts.
Lab 2 Overview – Part 1

- Part 1 – User defined functions that draw things
 - A, B, C. Develop a user defined function to draw a red box of any size.
 - D, E. Modify the function to be able to draw a box of any size and any location. Draw multiple boxes at once. Use the functions to draw three different pictures.

- Will be used in Lab 3 where we simulate a particle bouncing around in a box
Lab 2, Part 1 programming concepts

- Parameterized functions extend utility
 - Do one thing (again)
 - Do one of a class of things

- Chaining functions together
 - “Building block” effect – each piece is small, combination is powerful

- Incremental design & testing
Lab 2 Overview – Part 2

• Use a loop, and tables, to simulate a chemical reaction involving 4 chemicals
 – 2.1 – Calculate the levels of the 4 chemicals as they change over time. Plot the levels of one of the chemicals as it changes over time.
 – 2.2 – Extend the script of 2.1 to calculate and plot the levels of all 4 chemicals on the same graph.
Simulating Time Steps with Loops

Set up initial concentrations
A := A0; B := B0;
X := X0; Y := Y0;
for i from 1 to numTimeSteps do
 newA := A - k1*A*X;
 ...
 A := newA;
 indexTab[i] := i;
 Atab[i] := A;
end do:

display([Fplot(indexTab,Atab,"Green")], title="graph of A", labels=["time", "concentration"]);
Lab 2, Part 2 programming concepts

• It’s easy to see what code gets repeated:
 – What’s between the “for” and the “end do”.
 – Indentation helps readability.
• Pattern: Each repetition of the loop computes the level of a chemical at a particular time.
• Result: you compute the level of the chemicals at many different points in time.
• Use the index variable of the loop to place values in table(s).
Lab 2 programming concepts

• Pre loop processing
 – All the variables in the loop (except for the index variable) have to be initialized in a statement executed before the loop starts working.

• Post loop processing
 – Take all the value placed in the table, turn them into a list of values.
 – Plot the lists using *plot* as we’ve done before.
Lab 2 Maple Concepts: Observation on programming style

• Name user defined functions descriptively
 – Eg. Plot2lines versus P2

• Use comments (#) within code edit regions to explain complex code or operations

• Indent statements within “for” loops
 – for i from 1 to 10 do
 statement 1
 *
 statement n
 end do;
Lab 2 Maple Concepts: Part 0

• Practice now with Maple features needed for this lab
 – The following concepts are illustrated
 • Example 1
 – Maple’s line plotting feature
 – User defined functions
 • Example 2
 – Code edit region
 – Maple’s table data structure and “for” loop feature
 – User defined functions
Course activities next week (1/28-2/6)

• Quiz 2 will be released on Friday (1/28) at 6 PM
 – Deadline: Wednesday (2/2) at 4:30 PM
 – Makeup quiz – from Thursday (2/3) at 9 AM through Sunday (2/6) at 11:00 PM
 • 30% penalty
• Pre-lab 3 quizlet
 – From Thursday (2/3 – noon) through Monday (2/7 – 8 AM)
• Be sure to visit the CLC for quiz assistance