
SymDPOP: Adapting DPOP to exploit partial
symmetries

Xavier Olive and Hiroshi Nakashima

Graduate School of Informatics, Kyoto University

Abstract. This work proposes a new approach to dealing with sym-
metries in Distributed Constraint Optimisation Problems by adapting
the DPOP algorithm [1]. In contrast to an already proposed distributed
preprocessing method leading to a problem redefinition [2], we present
here a method that exploits the structure of DFS trees, with no explicit
redefinition of the problem.
We exhibit the flexibility in the symmetry detection that this algorithm
offers, then compare its performance with DPOP and the aforemen-
tioned preprocessing method. We demonstrate that SymDPOP signifi-
cantly cuts down the total volume of communication spent on symmetric
and partially symmetric problems, the latter being problems containing
symmetric subproblems. We also stress the fact that SymDPOP min-
imises the overhead of symmetry detection by keeping the total volume
of communication below that of DPOP.

Keywords. distributed constraint optimisation, symmetry breaking

1 Introduction

Distributed Constraint Optimisation is an efficient framework suitable for mod-
elling naturally distributed problems. Those consist in different agents cooper-
ating to solve an optimisation problem. Only a subset of agents knows about
each constraint, which leads to the idea of natural distribution. Keeping the
definition of a problem distributed may be relevant when computational and
communication power is limited, or when privacy concerns are raised.

After Asynchronous Backtracking by Yokoo [3], several algorithms have been
proposed to solve Distributed Constraint Satisfaction Problems (DCSP), includ-
ing ADOPT [4] or DPOP [1]. As symmetry processing can be successful in tra-
ditional constraint programming [5, 6], an attempt [2] has been made to exploit
them in a distributed context as a preprocessing step to any solving technique.
Yet, this procedure requires that all the agents agree on how to reformulate the
symmetric problem into a smaller one.

We present here SymDPOP, a new method for exploiting symmetries which
is specific to DPOP algorithm and does not require any preprocessing step. We
show that by adding extra information to the messages used by DPOP, we can
reduce their number, their volume, as well as the workload of each agent.



1

2 3

4

1

2

3

4

Fig. 1. A constraint graph and its DFS tree

We also show that unlike the preprocessed DPOP presented in [2], SymDPOP
cuts down on the total volume (rather than number) of messages sent. Moreover,
the work and communication saved in the symmetry detection process are not
lost even if the detection process cannot find any symmetry.

2 Preliminaries

Definition 1 (DCSP). A distributed constraint satisfaction problem (DCSP)
is a constraint satisfaction problem (CSP) where variables are distributed over
different agents. It consists of a finite set of variables x1 · · ·xn, a set of do-
mains d1 · · · dn, a set of agents a1 · · · an not necessarily all different, and a set
of constraints c1 · · · ct.

Definition 2 (Neighbourhood). Each constraint has a scope of variables,
thus a scope of agents. Two agents are neighbours if they share at least a con-
straint.

Constraints fall into two categories: local (private) and global (distributed)
constraints. Each agent owns a local subproblem, which is a partial view of the
global problem. This global problem is the union of all the local subproblems.

2.1 DFS trees

Whereas the first algorithms designed to solve DCSP kept increasing the size
of the neighbourhoods of their variables, a more reasonable approach used in
DPOP or ADOPT groups variables according to the constraints they share.

Definition 3 (DFS tree). A DFS tree is a rooted and directed spanning pseudo-
tree of the constraint graph such that any two neighbours in the original graph
are both in the same branch.

From a constraint graph, with variables as nodes and constraint as edges, as
shown in Figure 1, we build a DFS tree. The edges of the DFS tree only represent
some of the constraints. Thus, a back edge is an edge present in the constraint
graph as well as in the DFS pseudo-tree but not in the tree part of the DFS tree.
An agent connected to an ancestor via a back edge is called a pseudo-child and
the ancestor is called a pseudo-parent. In the figure, the dashed line is a back
edge, and 1 and 3 are resp. pseudo-parent and pseudo-child of each other.



Definition 4 (Separator). Each variable x has a separator sep(x), defined as
the set of its ancestors connected with an edge or a back edge to x or to any
descendent of x.

Definition 5 (Induced width). The induced width of a graph is the size of
the largest separator of the nodes in the generated DFS tree.

In other words, the separator of a variable x is the set of ancestor variables
of x constrained with x or with any descendant of x. DPOP bounds the number
of sent messages. However its weakness lies in the size of those messages which
grows exponentially with the induced width of the DFS tree.

In order to generate a DFS tree in a distribute manner [7], all the agents label
their variables as non-visited. Then, using a variable election algorithm, one of
the agents is designated as root. Choosing the variable with the biggest neigh-
bourhood as root favours well-balanced DFS trees, as the most linked variables
are more likely to be around the centre of the constraint graph.

The root then initiates the propagation of a token, which will visit all the
variables of the graph. It starts sending it to the first neighbour and waits for it
to come back, before sending it to the next neighbour. When a variable receives
a token, it marks the sender as parent. When it sends a token, it marks the desti-
nation variable as child. The token can return either from the variable to whom
the token was sent, or from another neighbour, in which case this neighbour
is marked as pseudo-child. Again, choosing to send the token to the neighbour
known to be the most connected is a heuristic likely to create a tree with a lower
induced width, hence offering better performance for DPOP.

2.2 DPOP

Two categories of algorithms using DFS trees stand out: ADOPT is an asyn-
chronous search algorithm using DFS trees to perform a top-down search pro-
cedure; DPOP uses a different approach: it aggregates solutions from bottom to
top of DFS trees and does not search.

DPOP is a distributed version of the bucket elimination algorithm [8]. It has
three phases: a DFS tree creation, a UTIL propagation and a VALUE propagation.
At the end of the tree creation, all the variables consistently label each other as
parent/child and pseudo-parent/pseudo-child. This serves as a communication
structure for the two other phases.

Definition 6 (UTIL message). The UTIL message sent by agent i to agent j
is a multidimensional matrix, with a dimension per variable in the separator of
i. The matrix is filled with the costs of each assignation.

The UTIL propagation phase starts from the leaves and goes up to the root.
Each node aggregates and optimises constraints, namely joins and projects UTIL
messages coming from its children and sends to its parent a representation of
relations with its ancestors via a new UTIL message.



Definition 7 (Junction). Let f1 · · · fk be functions defined over d1 · · · dk, the
junction

∑
fi is defined over u =

⋃
di, such that for each variable x in u,

(
∑

fi)(x) =
∑

(fi(x)).

The junction is an aggregation operation which a node applies on the re-
sulting constraints coming from its different subtrees. If node variable x has k
children y1, · · · yk, it receives from each of them a UTIL message with cost func-
tions f1, · · · fk defined on sep(y1), · · · sep(yk). Variable x then sums up all these
constraints in (f1 + · · ·+ fk) defined on sep(y1) ∪ · · · ∪ sep(yk) = sep(x) ∪ {x}.

Definition 8 (Projection). Let f be a function of a set of variables s =
{x, y1, · · · , yn}. We define the projection of f on x as the function f̃x of s−{x}
such that for every assignation {y1 = u1, · · · , yn = un} of s−{x}, f̃x(u1, · · · , un) =
minx f(x, u1, · · · , un).

The projection is an optimisation operation where the current node picks its
optimal value for each possible assignation of the variables in its separator. With
the same example, x will minimise the function (f1 + · · · + fk) and create f̃x

defined on sep(x), to be sent to its parent. The optimal value of the tree root will
thus be the result of the join/project process operated by the root node. From
this optimal value, all children can choose their optimum according to the value
given to each variable in their separator and to the projection they operated.

This VALUE propagation process is initiated by the root of the tree. Each
node determines its optimal value based on the values attributed to its separator
variables and propagates this value to its children with a VALUE message.

3 Symmetries

Symmetries are omnipresent in nature, thus widely used in physics or engineer-
ing, making problems easier hence faster to solve. As well, we can profit from
symmetries in constraint programming [6, 9] in order to avoid revisiting equiv-
alent assignations. As the induced width of DFS trees directly affects DPOP’s
performance, deriving implied constraints [5] will not make the resolution faster.
Therefore, we assume the problem reformulation approach is the only acceptable
way to deal with symmetries: [2] reformulates the problem after a preprocessing
step (and breaks symmetries), but we propose here a way to reformulate the
problem as we solve it (and exploit symmetries without breaking them).

3.1 Definitions

Definition 9 (Symmetry). A variable symmetry over a CSP is a mapping
that permutes the variables of the problem by pair, while leaving the constraints
unchanged.

For example, if (x1, y1, x2, y2, z) are all defined on {0, 1} and constrained by
xi+2yi = z, σ = {(x1 
 x2), (y1 
 y2)} is a symmetry: indeed, as σ({x1+2y1 =



z}) = {x2 + 2y2 = z} and σ({x2 + 2y2 = z}) = {x1 + 2y1 = z}, σ leaves the set
of constraints globally unchanged. Therefore, we can reduce the search effort by
solving only x1 + 2y1 = z and applying the symmetry to the solution in order
to find the solution of the whole original problem.

The detection of symmetries over centralised CSPs has been studied in [10]
with the help of group theory. In a distributed context, all the agents only have a
partial view over the problem, and are unable to find symmetries by themselves.
Henceforth, the distribution of the definition requires a different approach.

Definition 10 (Partial representation). A partial representation of a prob-
lem p is the restriction of p to a subset of variables V, their neighbour variables,
and the constraints involving any variable in V. Each agent naturally owns a
partial representation of the problem restricted to its variables.

Definition 11 (Partial symmetry). A partial symmetry over a CSP is a
symmetry over a partial representation of the CSP. The symmetries detected by
an agent which has a partial view over the problem are partial symmetries.

Proposition 1. If σ is a partial symmetry over p1 and p2, two partial repre-
sentations of the same CSP, then σ is a partial symmetry over p1 ∪ p2.

Proof. Let c be a constraint of p1∪p2. If c is a constraint of p1, then σ(c) ∈ p1 ⊂
p1 ∪ p2. As well, if c is a constraint of p2, then σ(c) ∈ p2 ⊂ p1 ∪ p2. Therefore, σ
is a symmetry over the union of the problems.

Corollary 1. If σ is a partial symmetry for each agent involved in a distributed
CSP, then it is a symmetry for the global problem.

Theorem 1. If σ is a partial symmetry for all agents owning a variable in σ
and for all their neighbouring agents, σ is a symmetry of the whole problem.

Proof. Let σ be a partial symmetry for an agent a. Let b 6= a be an agent of
the DCSP. If no variable of b is subject to a permutation in σ, then the problem
definition according to b is unchanged through σ. If not, σ is a partial symmetry
of b by hypothesis. Thus, according to corollary 1, σ is a symmetry.

Computing in a distributed way the intersection of all the partial symmetries
of a given problem as a preprocessing method is a basic method to exploit the
symmetries [2]. Hereunder, we propose an algorithm to compute this intersection
simultaneously with the UTIL propagation process of the DPOP algorithm.

3.2 Symmetries in DFS trees

We present in this paper SymDPOP, an algorithm inspired from DPOP, which
is adapted for detecting symmetries in the DFS tree structures and not in the
constraint graph. A symmetry in the DFS tree is a symmetry of the constraint
graph, but the reverse is not necessarily true.



MostConnected

a

b e

c f

d g

SymMostConnected

a

b e

c g

d f

Constraint graph

a

b

e

c

g

d

f

Fig. 2. Symmetric and non-symmetric DFS trees representing a symmetric problem

DPOP appears to be particularly efficient when, during the tree generation,
the token is passed in priority to the neighbour which has the largest neighbour-
hood. In case of equal number of neighbours, the choice among them can be
done arbitrarily by, for example, the alphabetical order of the variable names.

However, as symmetry detection focuses on permutations of variables owned
by the same agent, we introduce a simple heuristic to choose the next variable in
a total order of the agent owning it, eg. the alphabetical order of agent names, be-
fore the final tie-breaking with variable names. This SymMostConnected heuristic
is more likely to keep the symmetry of the constraint graph in the DFS tree, as
shown on figure 2 where colours represent agents owning the variables.

3.3 SymDPOP

Detecting symmetries in a distributed context is based on the idea of theorem 1.
Each agent is able to detect its partial symmetries and if those are also par-
tial symmetries for the neighbours of agents owning variables involved in those
symmetries, they are symmetries of the whole problem. While the preprocessing
method used in [2] communicates at the agent level, SymDPOP uses the DFS
structure produced by DPOP algorithm and involves communication between
variables, drawing comparisons between variables owned by the same agent.

Like DPOP, the symmetry detection process starts from the leaves, builds
and propagates partial symmetries permuting subtrees, until it reaches the top
of the tree. However, each node n only keeps a representation of this partial
symmetry σ restricted to {n} ∪ sep(n), and propagates the representation of σ
restricted to sep(n) only.

Definition 12 (SymUTIL message). A SymUTIL message is a UTIL message to
which we attach a set S of partial symmetries defined as images of each variable
in the separator of the UTIL message. For each symmetry σi of the set S, and
for each variable x of the separator, if x is owned by agent a, then σi(x) is also
owned by the same agent a.

Proposition 2. It is possible to rebuild all the symmetric UTIL messages from
a SymUTIL message.



Algorithm 1 Once agents know about their DFS tree
for all agent owning leaf variables do

consider partial symmetries involving those leaves;
group leaves subject to partial symmetries;
for all source leaf do

build SymUTIL and start propagation;
end for
for all leaf not involved in any symmetry do

start UTIL propagation;
end for

end for

t

y

x2x1

ω(t)

ω(y) = σ(y) = τ(y)

τ(x2)σ(x1)

τσ

ω

Fig. 3. Consistency

After generating the DFS tree, each agent having leaf variables examines
them with their constraints to find those subject to a partial symmetry (algo-
rithm 1). Among those symmetric leaves, it labels one as source leaf, and builds
a set of partial symmetries σ1 · · ·σn associating each source leaf to its symmet-
ric leaves, and the separator of the source leaf to its symmetric separators. The
source leaves then build a SymUTIL message and sends it to their parent.

Definition 13 (Consistency). Let σ and τ be two partial symmetries of two
subproblems p and q. We say that σ and τ are consistent if for each variable x
in D(p) ∩ D(q), σ(x) = τ(x).

Proposition 3. Let σ and τ be two partial symmetries on two subproblems p
and q. If σ is consistent with τ , there exists a partial symmetry on p ∪ q.

This proposition will determine whether and how to propagate the symmetry
detection. Intuitively, referring to Figure 3, both nodes x1 and x2 are roots of
a subtree, for which there exists a partial symmetry σ (resp. τ) associating the
subtree to another subtree. If they match on their intersection, which is reduced
to {y} on the figure, and if we can also swap the other neighbours (here the
parents) of y with σ(y) = τ(y), then we can build a symmetry ω associating the



Algorithm 2 On reception of all UTIL/SymUTIL messages
if all the received messages are UTIL then

continue UTIL propagation;
else

if the problem is still partially symmetric then
continue SymUTIL propagation;

else
regenerate();

end if
end if

Algorithm 3 regenerate()
for all SymUTIL received do

rebuild the UTIL messages from the SymUTIL;
for all rebuilt UTIL messages do

continue UTIL propagation;
end for

end for

subtree rooted in y to the subtree rooted in ω(y) = σ(y) = τ(y). We formalise this
idea and extend it to the case of multiple symmetries in the following corollary.

Corollary 2 (SymUTIL propagation). Let (x1, · · ·xn) be sibling variables of
the same DFS tree, and Si = (σi1 , · · ·σik

) be the set of partial symmetries in
the SymUTIL message sent by xi to y, parent variable of all the (xi). Let υ be a
partial symmetry on the constraints involving y (and υ(y)). If by picking one σi

in each Si, all those selected σi are consistent together and with υ, then there
exists a partial symmetry ω on the subproblem represented by y-rooted subtree.

Proof. Since υ and all σi are consistent, there exist a partial symmetry ω on
the union of their associated subproblems. ω involves variables which are either
descendants of y or in the separator of y. For each variable z in D(ω), if z
is a variable or linked to a variable from one of the xi-rooted subtrees, then
ω(z) = σi(z). Otherwise, it is a neighbour of y and thus in D(υ), in which case
ω(z) = υ(z).

At the reception of all the SymUTIL messages (algorithm 2), destination vari-
able y cross-checks the consistency of the partial symmetries of its children,
and considers a partial symmetry on its separator, building de facto a potential
υ and ω. If this ω is a partial symmetry, the agent computes only one junc-
tion/projection operation for y and sends the appropriate SymUTIL message to
its parent. If the partial symmetries are not consistent, the symmetry detection
process stops (algorithm 3), regenerates as many UTIL messages as necessary,
attributes them to each variable and lets them continue the regular UTIL prop-
agation of DPOP algorithm.

When the UTIL/SymUTIL propagation is finished, each variable, starting from
the top of the tree, gets attributed a value. If the top of the tree is in a symmetric



Algorithm 4 On reception of a SymVALUE message
assign current variable x and all the σi(x).
continue SymVALUE propagation.

Algorithm 5 On reception of a VALUE message
if symmetric separators get the same assignation then

start a unique SymVALUE propagation;
else

continue VALUE propagation;
end if

state, it propagates the value down with SymVALUE messages, otherwise it uses
VALUE messages. The content of VALUE and SymVALUE messages is the same; only
the name differs.

Proposition 4. If variable x sends a SymUTIL message, including n symmetries
σi, and if the values attributed to sep(x) are equal to the ones attributed to
sep(σi(x)), then the values attributed to each variable of x-rooted subtree are
equal to the values attributed to the image of this subtree through σi.

Indeed, whether the whole problem is symmetric or not, if x sends a SymUTIL
message, it is the head of a subtree which is partially symmetric to the subtree
rooted in σi(x). If y is a descendent of x, it will choose its value according to the
value of its separator. The variables in y’s separator are either descendants of x
or part of x’s separator. Consequently, when a variable x receives a SymVALUE
message, it assigns the same value to the images of x through all the partial
symmetries σi (algorithm 4).

When it receives a VALUE message (algorithm 5), it keeps propagating unless
the variable previously sent a SymUTIL message. In that case, the agent starts
only one SymVALUE propagation for each group of partially symmetric variables
which has got the same separator assignation.

3.4 Example on a symmetric problem

We consider the problem between the following agents: c (•) owns c0, x (•)
owns {x1, x2}, y (•) owns {y1, y2}, z (•) owns {z1, z2}. All the variables are
defined on {0, 1, 2} and are subject to the following constraints: c0 6= x1, c0 6= x2,
x1 6= y1, x2 6= y2, z1 6= y1, z2 6= y2, x1 6= z1, x2 6= z2.

With the preprocessing method, agent x will detect a partial symmetry σ =
(x1 
 x2, y1 
 y2, z1 
 z2), and suggest it in order to agents y, z and c, which
will agree on the symmetry, and on a reformulation leading to the DFS tree on
the left side of Figure 4.

In contrast, SymDPOP starts at the end of the generation of the DFS tree.
Agent z finds that σ is a partial symmetry, and sends its constraint in a SymUTIL
message (double line in the figure), together with σ, to its parent, variable y1.



preprocessing

c

x z

y

DFS tree

c0

x1

y1

z1

vs.

DFS tree

c0

x1 x2

y1 y2

z1 z2

SymDPOP

c0

x1

y1

z1

Fig. 4. Difference between preprocessing approach and SymDPOP approach

When agent y gets the message, it considers the permutation of the parents of
y1 and y2 (x1 and x2) which is a partial symmetry consistent with σ. Then, it
computes only one junction and one projection operation on y1, then sends the
SymUTIL message to x1. x1 considers the permutation of the parents of x1 and
of x2, which are here the same variable c0: the problem is symmetric.

Agent c receives the SymUTIL message and, having no parents, sends a SymVALUE
message back. When agents receive a SymVALUE message, they attribute the value
to their variable, and to the image of the variable through σ.

3.5 Example on a non-symmetric problem

We consider the following problem: variables a, b, c and d are all owned by a
different agent. Agent t (•) owns variables t1 and t2, agent x (•) owns variables
x1 and x2, agent y (•) owns variables y1 and y2 and agent z (•) owns variables
z1 and z2. Those variables are all defined on {0, 1, 2} and are subject to the
following constraints: ∀i, xi 6= yi, xi 6= zi, xi 6= ti, and t1 6= d, t1 6= b, a 6= b, a 6= c
and a 6= t2. We will refer to Figure 5 as we discuss further about this problem.

First of all, this problem is not globally symmetric: we cannot permute any
pair of variables and leave the problem unchanged. However, if agents x, y or
z consider their definition of the problem, they can find the following partial
symmetries: σx = (x1 
 x2, y1 
 x2, z1 
 z2, t1 
 t2) for agent x, σy = (x1 

x2, y1 
 y2) for agent y, and σz = (x1 
 x2, z1 
 z2) for agent z. Using DPOP,
the UTIL message that y1 would send to x1 and the one that y2 would send to
x2 would be identical, and would both be sent between the same agents x and
y. Even though the problem is not symmetric, SymDPOP will be able to gather
those messages into one SymUTIL message.

At the end of the generation of the DFS tree, variables c and d are not
subject to partial symmetries, so they follow the regular DPOP procedure and
send a UTIL message to their parent variable. Then, agent y (resp. z) detects its
partial symmetry σy (resp. σz). As a consequence, variable y1 (resp. z1) sends
a SymUTIL (double line in the figure) message to variable x1, containing the
constraint between x1 and y1 (resp. z1) and the partial symmetry σy (resp. σz).



DFS tree

c

a

b

d

t2

t1 x2

x1 z2

z1

y2

y1

SymDPOP

c

a

b

d

t2

t1

Fig. 5. Partially symmetric problem

When agent x receives the messages, it considers swapping the parent of x1

(t1) and of x2 (t2) and builds a symmetry consistent with the one received from
y and from z. Therefore, it joins the constraints, projects x1 out and sends the
SymUTIL message together with σx to variable t1. When it receives the messages,
it also receives an UTIL message constraining d and t1(6= t2), hence stopping the
SymUTIL propagation. Variables t1 and t2 are then parents of the root of sym-
metric subtrees, and the SymUTIL message received from agent x is transformed
into two UTIL messages directed to t1 and to t2 (dashed line) who continue the
regular UTIL propagation process from now on.

On the way down, when agent t gets the two VALUE messages, it compares
the value assigned to t1 and t2. If t1 = t2 then t1 sends a SymVALUE to x1,
which will assign a value to x1 and x2 then sends another SymVALUE to agents
y and z. If t1 6= t2, then t1 and t2 both send a VALUE message to agent x which
will compare the value attributed to x1 and x2 and consider as well the choice
between a VALUE propagation and a SymVALUE propagation.

4 Evaluation

4.1 Examples

In this section, we measured the number and volume of messages sent during the
process of solving the problems in the past sections. We implemented SymDPOP
on FRODO framework [11] for our measurements. We measured the number and
volume of messages exchanged for solving the symmetric problem of Figure 4 in
Table 1. The biggest part of the total number of messages is used to generate a
DFS tree, and both methods work on the same tree, so SymDPOP and DPOP are
equal on that aspect. On the UTIL/VALUE propagation part, however, SymDPOP
reformulates the problem dynamically, and cuts the number of messages by 2.



DPOP SymDPOP

DFSgeneration 2281 2281
UTIL/VALUE 12 6

total 2293 2287

DPOP SymDPOP

DFSgeneration 15607 15607
UTIL/VALUE 4278 2794

total 19885 18401

DPOP SymDPOP

DFSgeneration 3344 3344
UTIL/VALUE 22 19

total 3366 3363

DPOP SymDPOP

DFSgeneration 24052 24052
UTIL/VALUE 7000 6746

total 31052 30846

Table 1. Number (up) and volume (down, in bytes) of messages sent to solve problem
of Fig. 4 (left) and problem of Fig. 5 (right)

Be that as it may, in a distributed context, the communication volume has
a substantial impact on the performance. Even though lots of messages are sent
for generating this DFS tree, those are rather small compared to the messages
including a constraint. SymDPOP also cuts the volume of those constraint and
value messages. To put the comparison with the DFSgeneration phase, SymD-
POP cuts almost 10% of the total communication volume here.

Furthermore, one of the main concerns of symmetry treatment is the overhead
of symmetry detection. One of the main advantages of SymDPOP is that it does
not generate extra messages even if the problem is not symmetric. It uses the
regular UTIL messages to detect the symmetry and the information added to
make a SymUTIL messages (a list of variables) is smaller than a whole UTIL
message (a multidimensional matrix of costs).

As we solved the non-symmetric problem from Figure 5, the values given to
t1 and t2 were different, and only VALUE messages were sent. Table 1 shows the
statistics that FRODO gathered. Even though the problem was not symmetric,
we saved 3 UTIL messages (and few bytes), instead of wasting messages trying
to detect a symmetry from the partial symmetries detected by some agents. In
contrast, the preprocessing method would use extra messages for the suspected
partial symmetries, σx, σy and σz which are not symmetries of the whole prob-
lem, and switch back to the regular DPOP method eventually.

4.2 SensorDCSP benchmark

For this evaluation, we used the problem SensorDCSP presented in [12] to com-
pare DPOP, SymDPOP, and the preprocessing method of [2]. This problem
consists of sensors tracking mobiles moving over a map. At all time, each mo-
bile has to be tracked by exactly three sensors within range. The distribution of
the sensors makes this problem naturally distributed. Each variable is a boolean
associated to a sensor/mobile couple, and owned by the corresponding sensor.
Each constraint over a mobile is distributed over all the sensors detecting it. If
two mobiles are close enough to each other, they are detected by the same sen-
sors, thus subject to the same constraints. This makes SensorDCSP a convenient
benchmark of symmetric distributed problem, albeit not NP-complete.



50 mobiles 100 mobiles
DPOP preDPOP SymDPOP DPOP preDPOP SymDPOP

preprocessing 1042 1898
DFSgeneration 30600 17874 30600 63648 30114 63648
UTIL/VALUE 5396 3212 3212 11048 5298 5298

total 35996 22128 33812 74696 37310 68946
Table 2. Number of messages for solving a 25-sensor SensorDCSP instance

50 mobiles 100 mobiles
DPOP preDPOP SymDPOP DPOP preDPOP SymDPOP

preprocessing 736 1742
DFSgeneration 1696 1335 1696 2824 1889 2824
UTIL/VALUE 1161 900 923 1977 1285 1406

total 2857 2971 2619 4801 4916 4230

Table 3. Volume (in kbytes) of messages sent for solving a 25-sensor SensorDCSP

instance (average on 100 instances)

We compared the executions of this benchmark with FRODO framework in
a shared-memory environment1 and with mpj-express [13] based communication
structures on 6 Fujitsu HX600 nodes2 of the T2K Open Supercomputer [14] for
25 sensors distributed over a map, and with a variable number of mobiles.

Figure 6 shows the computation time averaged on 100 executions. The shared-
memory implementation limits the communication effect, therefore SymDPOP
improves the computation time by 30 %, versus 50 % for the preprocessing
method. However, with a MPI implementation, the preprocessing method ham-
pers the performance, and only SymDPOP manages to yield faster resolution.

We showed in the examples and in the MPI execution that communication
volume with SymDPOP was significantly improved. We compared the commu-
nication volume in two instances of the problem, with 25 sensors and 50 (and
100) mobiles on Table 3. DPOP and SymDPOP on one hand both generate a
complete DFS tree using a large number of small messages. SymDPOP and the
preprocessed DPOP use the same number of messages for the UTIL and VALUE
propagation, SymUTIL messages being slightly bigger than the UTIL ones. How-
ever, the preprocessing messages used to detect the symmetries are extremely
heavy. Considering the total communication volume, SymDPOP shows a reduc-
tion of more than 10 %, whereas the preprocessed DPOP is an actual regress.

5 Conclusions

In this paper, we presented SymDPOP, a new original DPOP algorithm to ex-
ploit strict and partial symmetries dynamically as we explored the DFS tree

1 Core2Duo based Linux, 2GB RAM, java-6-sun-1.6
2 Each node consists of 4 quad-core Opteron 8356, 32GB RAM, java-6-sun-1.6



10 20 30 40 50 60 70 80 90 100
20

40

60

80

100

120

140

160

DPOP

SymDPOP

preDPOP

Fig. 6. Computation time (in ms) for solving a {25-x}-SensorDCSP instance (average
on 100 instances) on a shared-memory FRODO execution

10 20 30 40 50 60 70 80 90 100
20

40

60

80

100

120

140

160

DPOP

SymDPOP

preDPOP

Fig. 7. Computation time (in ms) for solving a {25-x}-SensorDCSP instance (average
on 100 instances) on a mpj-express FRODO execution on T2K supercomputer



representation of a problem. The algorithm dynamically reformulates the struc-
ture of the problem during UTIL propagation phase of the DPOP algorithm.
Implemented on FRODO framework with shared memory (resp. MPI) commu-
nication structures, SymDPOP cuts down execution time by 30 % (resp. 20 %)
and communication volume by 10 %.

One of the most sophisticated parts of this symmetry breaking method is
its behaviour on non-symmetric problems. In contrast with other symmetry
detection preprocessing methods, SymDPOP never uses extra messages, elim-
inating any communication overhead which could hamper the resolution of a
non-symmetric problem.

References

1. Petcu, A., Faltings, B.: A scalable method for multiagent constraint optimization.
In: Proc. of 2005 IJCAI. Volume 19. (2005) 266

2. Olive, X., Nakashima, H.: Breaking symmetries in distributed constraint program-
ming problems. In: Proc. of the 9th Int. Workshop on Distributed Constraint
Reasoning. (2009)

3. Yokoo, M., Hirayama, K.: Algorithms for distributed constraint satisfaction: A
review. Autonomous agents and Multi-agents systems 3(2) (2000) 198–212

4. Modi, P.J., Shen, W.M., Tambe, M., Yokoo, M.: ADOPT: Asynchronous dis-
tributed constraint optimization with quality guarantees. Artificial Intelligence
161(1-2) (2005) 149–180

5. Fahle, T., Schamberger, S., Sellmann, M.: Symmetry breaking. Lecture Notes in
Computer Science 2239 (2001) 93–107

6. Cohen, D., Jeavons, P., Jefferson, C., Petrie, K., Smith, B.: Symmetry definitions
for constraint satisfaction problems. Constraints 11(2) (2006) 115–137

7. Petcu, A., Faltings, B., Parkes, D.: M-DPOP: Faithful distributed implementation
of efficient social choice problems. Artificial Intelligence 32 (2008)

8. Dechter, R.: Bucket elimination: A unifying framework for reasoning. Artificial
Intelligence 113(1-2) (1999) 41–85

9. Roy, P., Pachet, F.: Using symmetry of global constraints to speed up the resolution
of constraint satisfaction problems. In: Workshop on Non Binary Constraints,
ECAI. Volume 98. (1998)

10. Puget, J.F. In: Automatic Detection of Variable and Value Symmetries. Springer
Berlin – Heidelberg (2005) 475–489

11. Leaute, T., Ottens, B., Szymanek, R.: FRODO 2.0: An open-source framework for
distributed constraint optimization. http://liawww.epfl.ch/frodo/ (2009)

12. Fernandez, C., Bejar, R., Krishnamachari, B., Gomes, C.: Communication and
computation in distributed CSP algorithms. In: CP ’02: Proceedings of the 8th
International Conference on Principles and Practice of Constraint Programming.
Lecture Notes in Computer Science, London UK, Springer-Verlag (2003) 664–679

13. Baker, M., Carpenter, B., Shafi, A.: MPJ Express: towards thread safe Java HPC.
In: Proceedings of the 2006 IEEE International Conference on Cluster Computing
(Cluster 2006). (2006) 1–10

14. Nakashima, H.: T2k open supercomputer: Inter-university and inter-disciplinary
collaboration on the new generation supercomputer. Intl. Conf. Informatics Edu-
cation and Research for Knowledge-Circulating Society (2008) 137–142


