Adapting DPOP to exploit partial symmetries

AAMAS ’10 – DCR workshop

Xavier Olive and Hiroshi Nakashima

Graduate School of Informatics
Kyōto university

May 11, 2010
Introduction

- Symmetry definition, detection, exploitation
- preprocessing method (DCR’09)
- dynamic exploitation method (DCR’10)
Introduction

Definitions

Detection of symmetries

Exploitation of symmetries

Conclusion
Introduction

Definitions
- Distributed constraint programming
- What is a symmetry?

Detection of symmetries

Exploitation of symmetries

Conclusion
Constraint programming problem

- finite set of variables \mathcal{X}
- finite set of domains \mathcal{D}
- finite set of constraints \mathcal{C} on a scope of variables

Example: n-queens problem

- Place n queens on a chessboard so that they do not attack each other.
Distributed constraint programming problem

- finite set of variables $\mathcal{X} = \{x_1, \cdots x_k\}$
- finite set of domains $\mathcal{D} = \{d_1, \cdots d_k\}$
- finite set of constraints \mathcal{C}, $c \in \mathcal{C}$ a subset of $d_1 \times \cdots \times d_k$
- finite set of non necessarily different agents $\mathcal{A} = \{a_1, \cdots a_k\}$
Example: SensorDCSP benchmark

- Each mobile \((t_1) \) must be tracked by exactly 3 sensors \((s_i) \).
- Additional constraint: visibility
Example: SensorDCSP benchmark

Related concepts
- natural distribution
- privacy
- local/global
Introduction

Definitions

Distributed constraint programming

What is a symmetry?

Detection of symmetries

Exploitation of symmetries

Conclusion

Adapting DPOP to exploit partial symmetries
In geometry, a function that preserves the structure
Symmetry on the equations

\[x_1 + y_1 = z_1 \]

\[z_2 = y_2 + x_2 \]
Symmetry on the constraint graph
Symmetry in CSP

- A mapping on the CSP that preserves its solutions
 \((\text{solution symmetry})\)

 or

- A permutation of the variables (values) that leaves the set of constraints globally unchanged
 \((\text{problem symmetry})\)
Example: symmetries in SensorDCSP

Adapting DPOP to exploit partial symmetries
Introduction

Definitions

Detection of symmetries

The symmetry \times distribution issue
The distributed detection algorithm (DCR’09)

Exploitation of symmetries

Conclusion

Adapting DPOP to exploit partial symmetries
The symmetry \times distribution issue

A symmetry leaves the structure of the whole problem unchanged, but no agent holds a definition of the global problem.

Where to start?
Global symmetries over the definition of the whole problem

L \subset G \subset P

Local symmetries involve only local constraints

Partial symmetries over a partial definition of the whole problem

Adapting DPOP to exploit partial symmetries
Theorem

If σ is a partial symmetry
 for all agents owning a variable in σ and
 for all their neighbour agents
then σ is a global symmetry for the whole problem.

Consequence

If an agent agrees with the neighbours of its neighbours about its partial symmetries, those are global.
Introduction

Definitions

Detection of symmetries

The symmetry \times distribution issue

The distributed detection algorithm (DCR’09)

Exploitation of symmetries

Conclusion
The distributed detection algorithm

- preprocessing method to any resolution algorithm
- identifies global symmetries from partial symmetries
- requires a post-exploitation (e.g., reformulation) to be efficient
The distributed detection algorithm

- set a priority order on the agents
- agent a_i detects a partial symmetry
 ... then send them to involved agents (lower priority)
- if all neighbours agree, we have a global symmetry
 ... and all involved agents have this knowledge.
Question

If only one agent disagrees on a partial symmetry, can we still optimise anything?

3 ways to exploit symmetries

- exploiting during search
- adding constraints
- reformulating
Introduction

Definitions

Detection of symmetries

Exploitation of symmetries

- The DPOP algorithm
- The SymDPOP algorithm
- SensorDCSP benchmark

Conclusion

Adapting DPOP to exploit partial symmetries
Definition: DFS tree

- Structure built from constraint graph
- Two variables falling in different branches are unconstrained
The DPOP algorithm

- **Constraints** (UTIL) are joined/projected and propagated from all leaves to the root.
- **Values** (VALUE) are calculated from parent values and propagated to the leaves.

![DPOP Diagram]

Adapting DPOP to exploit partial symmetries
Symmetric DFS tree

- **Invariant structure** through variable permutation.
- \(x_1 \leftrightarrow x_3, \ x_4 \leftrightarrow x_6, \ x_5 \leftrightarrow x_7 \)
Symmetric DFS tree

- Same UTIL messages
- We propose a propagation **merging nodes and messages**

Adapting DPOP to exploit partial symmetries
Introduction

Definitions

Detection of symmetries

Exploitation of symmetries

The DPOP algorithm

The SymDPOP algorithm

SensorDCSP benchmark

Conclusion
Distribution of data

- Agents lack information for finding global symmetry

... but are able to detect **partial symmetry**

![Diagram showing distribution of data with nodes and edges representing variables x0, x1, x2, x3, x4, x5, x6, x7.]

According to •

Adapting DPOP to exploit partial symmetries
Distribution of data

- Agents lack information for finding global symmetry
 ... but are able to detect **partial symmetry**

![Diagram showing partial symmetries](image)
Distribution of data

- Agents lack information for finding global symmetry
 ... but are able to detect **partial symmetry**

Adapting DPOP to exploit partial symmetries
Distribution of data

- Agents lack information for finding global symmetry

 ... but are able to detect **partial symmetry**

Adapting DPOP to exploit partial symmetries
Searching global symmetries: SymUTIL propagation

- Building a global symmetry from partial ones
- Process merged with UTIL propagation

\[C_{4,1} = (C, x_1 \Leftrightarrow x_3, x_4 \Leftrightarrow x_6) \]
Searching global symmetries: SymUTIL propagation

- Building a global symmetry from partial ones
- Process merged with UTIL propagation

\[C_{5,1} = (C, x_1 \Leftrightarrow x_3, x_5 \Leftrightarrow x_7) \]
Searching global symmetries: SymUTIL propagation

- Building a global symmetry from partial ones
- Process merged with UTIL propagation

$C_{1,0} = (C, x_1 \Leftrightarrow x_3, x_0 \Leftrightarrow x_0)$
Optimisation of VALUE propagation

- SymUTIL → x_0 (root): we found a global symmetry
- We can also optimise the VALUE propagation

\mathcal{V}_0 will not reach x_3
Optimisation of VALUE propagation

- SymUTIL $\rightarrow x_0$ (root): we found a global symmetry
- We can also optimise the VALUE propagation

V_1 will not reach x_6, x_7
A problem with no global symmetry

The \((\bullet,\bullet,\bullet)\)-symmetry is not a \((\bullet)\)-symmetry.
A problem with no global symmetry

\((x_1, y_0) \) -symmetry is not a \((x) \) -symmetry.

and \(\bullet \) analyze their partial symmetries and build a new one including \(\bullet \).

ends the UTIL propagation.

Adapting DPOP to exploit partial symmetries

and \(\bullet \) start propagating their partial symmetry.
A problem with no global symmetry

- analyses its SymUTILs and build a new one including .
A problem with no global symmetry

- changes SymUTIL to UTIL propagation.
A problem with no global symmetry

The \((x_0, \cdot, \cdot)\)–symmetry is not a \((\cdot, \cdot, \cdot)\)–symmetry.

\(\cdot\) and \(\cdot\) start propagating their partial symmetry. \(\cdot\) analyses its SymUTILs and builds a new one including \(\cdot\). \(\cdot\) changes SymUTIL to UTIL propagation. \(\cdot\) ends the UTIL propagation.

Adapting DPOP to exploit partial symmetries
Adapting DPOP to exploit partial symmetries

Question

If only one agent disagrees on a partial symmetry, can we still optimise anything?

The answer is yes

We propagate partial symmetries the same way we propagate constraints. (join/project)
Introduction

Definitions

Detection of symmetries

Exploitation of symmetries

- The DPOP algorithm
- The SymDPOP algorithm
- SensorDCSP benchmark

Conclusion
Execution for 25 sensors in a multithreaded process:

- SymDPOP: 30%
- DDA/DPOP: 50%
Adapting DPOP to exploit partial symmetries

Execution for 25 sensors in a MPI process (6 nodes):
- SymDPOP: 20%
- DDA/DPOP: worse
Execution for 25 sensors, 100 mobiles

- **number of messages**

<table>
<thead>
<tr>
<th></th>
<th>DPOP</th>
<th>DDA/DPOP</th>
<th>SymDPOP</th>
</tr>
</thead>
<tbody>
<tr>
<td>DDA</td>
<td></td>
<td></td>
<td>1898</td>
</tr>
<tr>
<td>DFS</td>
<td>63648</td>
<td>30114</td>
<td>63648</td>
</tr>
<tr>
<td>UTIL/VALUE</td>
<td>11048</td>
<td>5298</td>
<td>5298</td>
</tr>
<tr>
<td>total</td>
<td>74696</td>
<td>37310</td>
<td>68946</td>
</tr>
</tbody>
</table>

- **SymDPOP: 10%**

- **DDA/DPOP: 50%**

- **volume of messages**

<table>
<thead>
<tr>
<th></th>
<th>DPOP</th>
<th>DDA/DPOP</th>
<th>SymDPOP</th>
</tr>
</thead>
<tbody>
<tr>
<td>DDA</td>
<td></td>
<td></td>
<td>1742</td>
</tr>
<tr>
<td>DFS</td>
<td>2824</td>
<td>1889</td>
<td>2824</td>
</tr>
<tr>
<td>UTIL/VALUE</td>
<td>1977</td>
<td>1285</td>
<td>1406</td>
</tr>
<tr>
<td>total</td>
<td>4801</td>
<td>4916</td>
<td>4230</td>
</tr>
</tbody>
</table>

- **SymDPOP: 13%**

- **DDA/DPOP: worse**
Conclusion

- Symmetry exploitation improves time and communication performance

- SymDPOP treats symmetry as entities to be joined and projected

- SymDPOP yields better communication optimisation, even if the problem is not globally symmetric.