The Aim of This Research

- To investigate the development of numerical methods for systems and control which have a guarantee on accuracy.
- An end-product — an “infallible” algorithm: the user would specify a priori a tolerance as small as desired, and the computer would provide an answer which was guaranteed to be accurate to the specified tolerance.
- An established subject within Computer Science and a few application areas in science and engineering. Quite a new direction in the systems and control area.

A characteristic feature — the application of computer algebra tools and the avoidance of floating-point arithmetic.

Problems Investigated

- Computation of certain quantities widely used in the modern analysis methods for control system performance, e.g. the H_2 and H_{∞} norms of a stable transfer function and the induced norm of a linear system.
- Some common algorithms for controller synthesis problems, e.g., controller computation for H_2 and H_{∞} optimisation.

An Example: L_∞ Norm Computation

If the computation of a scalar quantity, e.g., the L_∞ norm, is sought, a “validated numerical method” will produce an interval of a user-specified width within which the numerical answer is guaranteed to lie.

The L_∞ norm of $G(s)$, a matrix of rational functions of the complex variable s, is defined as $\|G(s)\|_\infty := \sup_{s \in \mathbb{C}} \tau(G(j\omega))$ where $\tau(\cdot)$ is the largest singular value. A current implementation of the L_∞ norm computation in Matlab (a software package commonly used in systems and control area) uses floating-point arithmetic and is prone to numerical error. For instance, it fails to compute the L_∞ norm of $G(s) = \frac{s^2 + 10^{-7}s + 1}{s^2 + 10^{-3}s + 1}$ whose L_∞ norm is $\|G(s)\|_\infty = 10$.

> out = linfnorm(nd2sys([1 10^-7 1], [1 10^-8 1]))

LINFNORM iteration DID NOT converge to a lower bound for the norm is 10
out = 10.000000001492336
Inf = 1.000000000000000

A validated numerical algorithm implemented in Maple makes use of the result below.

Theorem 1 ([1])

Let $G(s) \in L_\infty$ be rational and write its L_∞ norm $\|G(s)\|_\infty$ as γ_∞. Let $\Phi_1(s) = s^2I - G^T(-s)G(s)$ and denote $g_i(s) = \det \Phi_i(s)$. Moreover, write $g_i(x) = \frac{\gamma_i(x)}{\gamma_i}$. Let $h_i(x)$ be the square-free part of $n_i(x)$ considered as a polynomial in x and γ. Then, $\gamma > \gamma_\infty$ if and only if $\gamma > \tau_i(G(j\infty))$ and $h_i(x)$ has no roots in $-\infty < x \leq 0$. Further, if γ_∞ is achieved in $0 < \omega < \infty$, then $h_i(x)$ has a multiple root in $-\infty < x < 0$.

- The norm is equal to $\tau(G(0)), \tau(G(j\infty))$ or a real root of the discriminant of $h_i(x)$.
- The L_∞ norm computation of $G(s)$ reduced to the univariate polynomial real root computation problem and the Sturm test.
- That is, intervals with arbitrary widths which contain these candidates can be found by means of standard real root localisation methods, for instance, Descartes’ rule of signs.
- The Sturm test can determine which interval contains the true L_∞ norm by examining whether $\gamma > \tau_i(G(j\infty))$ and also the existence of roots of $h_i(x)$ in $-\infty < x \leq 0$.

For the above example, the actual L_∞ norm is found from the discriminant of $h_i(x)$, $(\gamma + 10)(\gamma - 10)(133333333333333333333333333333333333)$.

We emphasise that the original real number data, and each step of the test, makes use of rational number arithmetic only. Rounding errors are avoided and the method counts as a validated numerical method. This contrasts with all current implementations of the L_∞ norm which can suffer from numerical error.

Controller Synthesis Problems

For instance, the H_2 optimal controller synthesis problem is formulated as: Given a plant P, find a controller K that stabilises the closed-loop system and minimise the H_2 norm of the transfer function from $(d_1, d_2)^T$ to $(y_1, y_2)^T$.

The development of validated numerical methods for the computation of controllers using some standard synthesis procedures presents a number of interesting challenges.

- May not always be desirable to specify “guaranteed accuracy” in terms of the constants of the controller.
- A possibility: Find a controller whose distance from the actual controller is within a user-specified value in terms of the standard metrics on dynamical systems, such as the gap or ν-gap metric.
- Questions relating to continuity of solution to be answered along with algorithm development.
- A multiple stage algorithm may require use of interval methods.

Progress in this direction has been reported in [1].

Further Research

- Tackle problems which do not allow satisfactory algorithms to be implemented using ordinary floating-point arithmetic.
- Lack of reliable computational tools has been preventing some theoretical developments from being used in practice. Investigation of these problems is crucial and could have a significant impact.

References