Solving Recurrence Relations

So what does
\[T(n) = T(n-1) + n \]
look like anyway?

Recurrence Relations

- Can easily describe the runtime of recursive algorithms
- Can then be expressed in a closed form (not defined in terms of itself)
- Consider the linear search:

Eg. 1 - Linear Search

- Recursively
- Look at an element (constant work, c), then search the remaining elements...

\[T(n) = T(n-1) + c \]

- “The cost of searching n elements is the cost of looking at 1 element, plus the cost of searching n-1 elements”

Methods of Solving Recurrence Relations

- Substitution (we’ll work on this one in this lecture)
- Accounting method
- Draw the recursion tree, think about it
- The Master Theorem*
- Guess at an upper bound, prove it

* See Cormen, Leiserson, & Rivest, Introduction to Algorithms

Linear Search (cont.)

Caveat:
- You need to convince yourself (and others) that the single step, examining an element, “is” done in constant time.
- Can I get to the \(i^{th} \) element in constant time, either directly, or from the \((i-1)^{th}\) element?
- Look at the code

\[T(n) = T(n-1) + c \]

But, \(T(n-1) = T(n-2) + c \), from above

Substituting back in:

\[T(n) = T(n-2) + c + c \]

Gathering like terms

\[T(n) = T(n-2) + 2c \]
Linear Search (cont.)

- Keep going:
 \[T(n) = T(n-2) + 2c \]
 \[T(n-2) = T(n-3) + c \]
 \[T(n) = T(n-3) + c + 2c \]
 \[T(n) = T(n-3) + 3c \] (3)
- One more:
 \[T(n) = T(n-4) + 4c \] (4)

Looking for Patterns

- Note, the intermediate results are enumerated
- We need to pull out patterns, to write a general expression for the \(k \)th unwinding
 \[T(n) = T(n-k) + kc \]
- This requires practice. It is a little bit art. The brain learns patterns over time. Practice.
- Be careful while simplifying after substitution

Eg. 1 – list of intermediates

<table>
<thead>
<tr>
<th>(T(n)) at (i)th unwinding</th>
<th>(i)</th>
</tr>
</thead>
<tbody>
<tr>
<td>(T(n) = T(n-1) + 1c)</td>
<td>1</td>
</tr>
<tr>
<td>(T(n) = T(n-2) + 2c)</td>
<td>2</td>
</tr>
<tr>
<td>(T(n) = T(n-3) + 3c)</td>
<td>3</td>
</tr>
<tr>
<td>(T(n) = T(n-4) + 4c)</td>
<td>4</td>
</tr>
</tbody>
</table>

Linear Search (cont.)

- An expression for the \(k \)th unwinding:
 \[T(n) = T(n-k) + kc \]
- We have 2 variables, \(k \) and \(n \), but we have a relation
- \(T(d) \) is constant (can be determined) for some constant \(d \) (we know the algorithm)
- Choose any convenient \# to stop.

Linear Search (cont.)

- Let's decide to stop at \(T(0) \). When the list to search is empty, you're done…
- 0 is convenient, in this example…
 \[L_n \cdot k = 0 \Rightarrow n = k \]
- Now, substitute \(n \) in everywhere for \(k \):
 \[T(n) = T(n-n) + nc \]
 \[T(n) = T(0) + nc = nc + c_0 = O(n) \]
 \[(T(0) \text{ is some constant, } c_0) \]

Binary Search

- Algorithm – “check middle, then search lower ½ or upper ½”
- \[T(n) = T(n/2) + c \]
 where \(c \) is some constant, the cost of checking the middle…
- Can we really find the middle in constant time? (Make sure.)
Let's do some quick substitutions:

1. \[T(n) = T(n/2) + c \] (1)
 but \(T(n/2) = T(n/4) + c \), so
 \[T(n) = T(n/4) + c + c \] (2)
 \[T(n/4) = T(n/8) + c \]
 \[T(n) = T(n/8) + c + 2c \] (3)

Result at i\(^{th}\) unwinding

<table>
<thead>
<tr>
<th>i</th>
<th>Result at i(^{th}) unwinding</th>
</tr>
</thead>
<tbody>
<tr>
<td>1</td>
<td>(T(n) = T(n/2) + c)</td>
</tr>
<tr>
<td>2</td>
<td>(T(n) = T(n/4) + 2c)</td>
</tr>
<tr>
<td>3</td>
<td>(T(n) = T(n/8) + 3c)</td>
</tr>
<tr>
<td>4</td>
<td>(T(n) = T(n/16) + 4c)</td>
</tr>
</tbody>
</table>

\[n/2^k = 0 \implies k = \log_2 n \]

We need to write an expression for the k\(^{th}\) unwinding (in n & k)

- Must find patterns, changes, as \(i = 1, 2, \ldots, k \)
- This can be the hard part
- Do not get discouraged! Try something else...
- We'll re-write those equations...
- We will then need to relate n and k
Binary Search (cont.)

- Substituting back in (getting rid of k):
 \[T(n) = T(1) + c \log(n) \]
 \[= c \log(n) + c_0 \]
 \[= O(\log(n)) \]