catch(...){
 printf("Assignment::SolveProblem() AAAA!");
}

ADD SLIDES ON DISJOINT SETS

2-3 Tree

Outline

- Balanced Search Trees
 - 2-3 Trees
 - 2-3-4 Trees

Why care about advanced implementations?

Same entries, different insertion sequence:

→ Not good! Would like to keep tree balanced.

B-TREE

- B-tree keeps data sorted and allows searches, sequential access, insertions, and deletions in log(n).
- The B-tree is a generalization of a BST (node can have more than two children)
- Unlike balanced BST, the B-tree is optimized for systems that read and write.
- Used in databases and filesystems.
2-3 Trees

Features
- each internal node has either 2 or 3 children
- all leaves are at the same level

What did we gain?

What is the time efficiency of searching for an item?

2-3 Trees with Ordered Nodes

<table>
<thead>
<tr>
<th>2-node</th>
<th>3-node</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td></td>
</tr>
</tbody>
</table>

- leaf node can be either a 2-node or a 3-node

Example of 2-3 Tree

![Example of 2-3 Tree](image)

Inserting Items

Insert 39

![Inserting Items](image)
Inserting Items

Insert 38

- insert in leaf
- divide leaf
- move middle value up to parent
- result

Inserting Items

- still inserting 36
- divide overcrowded node, move middle value up to parent, attach children to smallest and largest
- result

Inserting Items

Insert 37

Inserting Items

After Insertion of 35, 34, 33

Inserting Items

Insert 36

Inserting so far

After Insertion of 35, 34, 33
Inserting Items

How do we insert 32?

1. Insert 32 as a right child of 30.
2. Insert 32 as a left child of 35.
3. Insert 32 as a right child of 39.
4. Insert 32 as a left child of 70.
5. Insert 32 as a right child of 90.

Deleting Items

Delete 70

1. Swap 70 with its inorder successor (80).

Inserting Items

- Creating a new root if necessary
- Tree grows at the root

Deleting Items

Deleting 70: swap 70 with inorder successor (80)

1. Swap 70 with its inorder successor (80).
Deleting Items

Deleting 70: ... get rid of 70

Slide 25

Deleting Items

Result

Slide 26

Deleting Items

Delete 100

Slide 27

Deleting Items

Delete 80

Slide 30
Deleting Items

Deleting 80 ...

(a) Swap with inorder successor

Slide 31

Deleting Items

Deleting 80 ...

(b) Node becomes empty

Delete value from leaf

Merges by moving 50 down and removing empty leaf

Slide 32

Deleting Items

Deleting 80 ...

(c) Root becomes empty

Merge: move 50 down, adopt empty leaf’s child, remove empty node

Remove empty root

Slide 33

Deleting Items

Final Result

(a) Comparison with binary search tree

(b) 50

10 20 30

20 40 50

Slide 34

Deletion Algorithm I

Deleting item I:

1. Locate node n, which contains item I
2. If node n is not a leaf → swap I with inorder successor
 → deletion always begins at a leaf
3. If leaf node n contains another item, just delete item I else
 try to redistribute nodes from siblings (see next slide)
 if not possible, merge node (see next slide)

Slide 35

Deletion Algorithm II

Redistribution

A sibling has 2 items:
→ redistribute item between siblings and parent

Merging

No sibling has 2 items:
→ merge node
→ move item from parent to sibling

Slide 36
Deletion Algorithm III

Redistribution
Internal node n has no item left
\rightarrow redistribute

Merging
Redistribution not possible:
\rightarrow merge node
\rightarrow move item from parent to sibling
\rightarrow adopt child of n

If n’s parent ends up without item, apply process recursively

2-3-4 Trees

- similar to 2-3 trees
- 4-nodes can have 3 items and 4 children

4-node

Merge node
Move item from parent to sibling
Adopt child of n

Operations of 2-3 Trees

All operations have time complexity of $\log n$

2-3-4 Trees and Red-Black Trees

- 2-3-4 trees are an isometry of red-black trees
 - for every 2-3-4 tree, there exists red-black tree with data elements in the same order.
 - operations on 2-3-4 trees that cause node expansions, splits and merges are equivalent to the color-flipping and rotations in red-black trees.
- 2-3-4 trees, difficult to implement in most programming languages so RB-trees tend to be used instead.
2-3-4 Tree: Insertion

Insertion procedure:
- similar to insertion in 2-3 trees
- items are inserted at the leaves
- since a 4-node cannot take another item, 4-nodes are split up during insertion process

Strategy
- on the way from the root down to the leaf: split up all 4-nodes “on the way”
 → insertion can be done in one pass
 (remember: in 2-3 trees, a reverse pass might be necessary)

2-3-4 Tree: Insertion

Inserting 60, 30, 10, 20, 50, 40, 70, 80, 15, 90, 100

2-3-4 Tree: Insertion

Inserting 50, 40 ...

2-3-4 Tree: Insertion

Inserting 70 ...

2-3-4 Tree: Insertion

Inserting 80, 15 ...

2-3-4 Tree: Insertion

Inserting 50, 40 ...

2-3-4 Tree: Insertion

Inserting 90 ...

2-3-4 Tree: Insertion

Inserting 90 ...

... 100 ...

2-3-4 Tree: Insertion Procedure

Splitting a 4-node whose parent is a 2-node during insertion

2-3-4 Tree: Insertion

Inserting 100 ...

2-3-4 Tree: Insertion Procedure

Splitting a 4-node whose parent is a 3-node during insertion

2-3-4 Tree: Insertion Procedure

Splitting 4-nodes during Insertion

2-3-4 Tree: Deletion

Deletion procedure:
- similar to deletion in 2-3 trees
- items are deleted at the leafs
 → swap item of internal node with inorder successor
- note: a 2-node leaf creates a problem

Strategy (different strategies possible):
- on the way from the root down to the leaf:
 turn 2-nodes (except root) into 3-nodes
 → deletion can be done in one pass
 (remember: in 2-3 trees, a reverse pass might be necessary)
2-3-4 Tree: Deletion

Turning a 2-node into a 3-node ...

Case 1: an adjacent sibling has 2 or 3 items

→ "steal" item from sibling by rotating items and moving subtree

![Diagram of 2-3-4 Tree: Deletion Case 1]

Case 2: each adjacent sibling has only one item

→ "steal" item from parent and merge node with sibling

(note: parent has at least two items, unless it is the root)

![Diagram of 2-3-4 Tree: Deletion Case 2]

2-3-4 Tree: Deletion Practice

Delete 32, 35, 40, 38, 39, 37, 60