Medians and Order Statistics

CLRS Chapter 9

What Are Order Statistics?
The \(k \)-th order statistic is the \(k \)-th smallest element of an array.

\[
\begin{array}{cccccccc}
3 & 4 & 13 & 14 & 23 & 27 & 41 & 54 & 65 & 75
\end{array}
\]

8th order statistic

The lower median is the \(\left\lfloor \frac{n}{2} \right\rfloor \)-th order statistic

The upper median is the \(\left\lceil \frac{n}{2} \right\rceil \)-th order statistic

If \(n \) is odd, lower and upper median are the same

What are Order Statistics?

Selecting \(i \)-th ranked item from a collection.

- First: \(i = 1 \)
- Last: \(i = n \)
- Median(s): \(i = \left\lfloor \frac{n}{2} \right\rfloor \) or \(\left\lceil \frac{n}{2} \right\rceil \)

Order Statistics Overview

- Assume collection is unordered, otherwise trivial.
 \[\text{find } i \text{-th order stat} = A[i] \]
- Can sort first \(- \Theta(n \lg n)\), but can do better \(- \Theta(n)\).
- I can find max and min in \(\Theta(n) \) time (obvious)
- Can we find any order statistic in linear time? (not obvious!)

Using the Pivot Idea

- Randomized-Select\((A[p..r],i)\) looking for \(i \)-th o.s.
 \[
 \begin{align*}
 &\text{if } p = r \\
 &\quad \text{return } A[p] \\
 &q \leftarrow \text{Randomized-Partition}\(A,p,r\) \\
 &k \leftarrow q \cdot p + 1 \quad \text{the size of the left partition} \\
 &\text{if } i = k \quad \text{then the pivot value is the answer} \\
 &\quad \text{return } A[q] \\
 &\text{else if } i < k \quad \text{then the answer is in the front} \\
 &\quad \text{return Randomized-Select}\(A,p,q-1,i\) \\
 &\text{else} \quad \text{then the answer is in the back half} \\
 &\quad \text{return Randomized-Select}\(A,q+1,r,i-k\)
 \end{align*}
\]
Randomized Selection

• Analyzing RandomizedSelect()
 − Worst case: partition always 0:n-1
 \[T(n) = T(n-1) + O(n) \]
 \[= O(n^2) \]
 − No better than sorting!
 − "Best" case: suppose a 9:1 partition
 \[T(n) = T(9n/10) + O(n) \]
 \[= O(n) \] (Master Theorem, case 3)
 − Better than sorting!
 − Average case: \(O(n) \) remember from quicksort

Worst-Case Linear-Time Selection

• Randomized algorithm works well in practice
• What follows is a worst-case linear time algorithm, really of theoretical interest only
• Basic idea:
 − Guarantee a good partitioning element
 − Guarantee worst-case linear time selection
• Warning: Non-obvious & unintuitive algorithm ahead!
• Blum, Floyd, Pratt, Rivest, Tarjan (1973)

Order Statistics: Algorithm

Select(A, n, i):
 Divide input into \([n/5]\) groups of size 5.
 /* Partition on median-of-medians */
 medians = array of each group's median.
 pivot = Select(medians, \([n/5]\), \([n/10]\))
 Left Array L and Right Array G = partition(A, pivot)
 /* Find ith element in L, pivot, or G */
 k = \(|L| + 1\)
 If i=k, return pivot
 If i<k, return Select(L, k-1, i)
 If i>k, return Select(G, n-k, i-k)

Order Statistics: Analysis

\[T(n) = T\left(\frac{n}{5}\right) + T\left(\max(k-1, n-k)\right) + O(n) \]

Only one done.
Order Statistics: Analysis

All groups of 5 elements. (And at most one smaller group.)

Order Statistics: Analysis 1

\[
\left\lceil \frac{n}{5} \right\rceil \text{ full groups of 5} \\
\left\lceil \frac{n}{5} \right\rceil \text{ partial groups of 2}
\]

Order Statistics: Analysis

Definitely Lesser Elements

Definitely Greater Elements

Order Statistics: Analysis 1

Must recur on all elements outside one of these boxes. How many?

Order Statistics: Analysis

\[
T(n) = T\left(\left\lfloor \frac{n}{5} \right\rfloor\right) + T\left(\frac{7n}{10} + 6\right) + O(n)
\]

A very unusual recurrence. How to solve?

Order Statistics: Analysis

Substitution: Prove \(T(n) \leq c \times n \).

\[
T(n) \leq c \times \left\lceil \frac{n}{5} \right\rceil + c \times \left(\frac{7n}{10} + 6\right) + d \times n
\]

Overestimate ceiling

\[
= \frac{9}{10} c \times n + 7c + d \times n
\]

Algebra

\[
= c \times n - (c \times \frac{n}{10} - 7c - d \times n)
\]

Algebra

\[
\leq c \times n
\]

when choose \(c,d \) such that \(0 \leq c \times \frac{n}{10} - 7c - d \times n \)
Order Statistics

Why groups of 5?

Sum of two recurrence sizes must be < 1.
Grouping by 5 is smallest size that works.