ENIAC: The Hack That Started It All

> Brian L. Stuart Drexel University

The ENIAC

What Is ENIAC?

- Large-scale computing system
- Contracted in 1943 for the US Army
- Built during WWII
- Dedicated February 15, 1946
- Converted to sequential instruction execution in 1948
- Retired 1955
- Used for:
 - Atomic bomb development
 - Ballistics trajectories
 - Number theory
 - Weather prediction
 - and more

John Mauchly Physicist

John Presper Eckert

Herman Goldstine

Arthur Burks

Harry Huskey

Kay Mauchly

Fran Bilas

Jean Bartik

Betty Holberton

Ruth Lichterman Marlyn Wescoff

Common Statistics

- 40 racks, each 8' by 2'
- About 18,000 tubes
- 100KHz basic clock
- $200\mu S$ addition time
- About 150KW of power
- 29 power supplies
- 78 DC voltages

Basic Architecture

- Initiating unit
- Cycling unit
- Two-panel master programmer
- 20 Accumulator units
- Multiplying unit
- Divider/Square rooter unit
- 3 Function table units
- Constant transmitter/card reader unit
- Card punch unit

Moore School Layout

9

Unusual Characteristics

- No bulk writeable memory
- No separation between storage and computation
- Divider/square rooter not always exact
- Very parallel

This was a highly parallel machine, before von Neumann spoiled it.

— D.H. Lehmer

- Initially programmed with wires and switches
- Feels like a dataflow architecture

Cycling Unit

- Distributes multi-phase clock throughout system
- Oscilloscope for monitoring individual clock signals
- 100 KHz design rate
- 60 KHz for stability for sometime after move to Aberdeen
- Three clock modes:
 - Continuous
 - One add time
 - One pulse

Clock Signals

Hand-Held Control

- 10 digits + sign (P or M)
- $\bullet\,$ Negative numbers stored as $M\,+\,10s$ complement
- 5 inputs: α , β , γ , δ , and ϵ
- $\bullet~2$ outputs: A and S
- 12 programs:
 - Operation: $\alpha,~\beta,~\gamma,~\delta,~\epsilon,$ 0, A, AS, or S
 - Clear/correct
 - Repeat count (on programs 5-12)

Decade Counter Module

Reading From Accumulator

Multiplier

- 3 racks
- *p*-digit multiplier
- Computes in $p+4 \ {\rm addition} \ {\rm times}$
- Uses digit multiplication table
- Fixed connections to accumulators:
 - Multiplier
 - Multiplicand
 - Product

Multiplication Example

- 42 times 347
- $4 \times 347 = 1200 + 160 + 28$
 - Left-hand partial product: 1120000000
 - Right-hand partial product: 0268000000
- $2 \times 347 = 600 + 800 + 14$
 - Add to LHPP: 0001000000
 - Add to RHPP: 0068400000
- LHPP: 1121000000, RHPP: 0336400000
- Add: 1457400000

Master Programmer

- 10 6-stage counters
- 20 decade counters
- Complex nested loop structures
- Negative/non-negative conditional branching:
 - Accumulator output sign into dummy program
 - Dummy program output into stage direct input
 - Two stage program outputs trigger negative and nonnegative actions
- "Computed goto:"
 - Run selected digit output into stage direct input
 - Stages 1–6 program outputs trigger actions based on values 0–5 of accumulator digit

Table of Squares

- Based on $(x+1)^2 = x^2 + 2x + 1$
- Let x be in Acc 16 and $f(x) = x^2$ be in Acc 18
- Algorithm:
 - 1. Initialize the values f(x) = 0 and x = 0
 - 2. For x < 9999:
 - (a) Add 2x to f(x)
 - (b) Add 1 to f(x)
 - (c) Add 1 to x
 - (d) Punch card with x and x^2

Table of Squares

Maximum

Programming

- Pre April 1948
 - Unit operations selected by panel switches
 - Sequencing:
 - * Switch settings on master programmer
 - * Cables carrying programming pulses
- Post April 1948
 - "Programming" to implement instruction set processor
 - Instructions stored on portable function tables
 - Multiple instruction set proposals:
 - * 51-code design: uses only original ENIAC hardware
 - * 60-code design: uses new converter unit
 - * 94-code design: uses new converter unit

Memory Enhancement

- Early suggestion of accumulators without arithmetic
- Proposal for delay line register to be supplied by EMCC
- 100 word core memory module in 1953 supplied by Burroughs

Questions?

http://cs.drexel.edu/~bls96/eniac/

How it Works

- Add Accumulator 3 to Accumulator 4
- Accumulator 3 has 15 and Accumulator 4 has 27
- Control signal sent to both accumulators
- Accumulator 3 program sends 1 pulse on 10s line and 5 pulses on 1s line
- Accumulator 4 program receives pulses from Accumulator 3:
 - 10s digit advances to 3
 - 1s digit advances to 2 with carry flipflop set
- Carry gate propagates carry, advancing 10s digit to 4
- Accumulators emit control pulse to trigger next operation

Configuration

- Step 1: Clear sets all accumulators to 0
- Step 2: Initiated by program pulse on 1-1
 - Pulse from 1-1 enters master programmer on terminal Ci
 - Counter for Stepper C increments
 - If ≤ 9999 output program pulse on C1o connected to 1-4
 - Otherwise output program pulse on C2o not connected

Configuration

- Step 2a: Initiated by pulse on 1-4
 - 1-4 triggers Program 6 (via 6i) on both Acc 16 and 18
 - Acc 16, Prog 6: operation A, repeat 2
 - Acc 18, Prog 6: operation $\beta,$ repeat 2
 - Acc 16 output A connected to data trunk 2
 - Data trunk 2 connected to Acc 18 input β
 - On completion, Acc 18 outputs control pulse on 60 connected to 1-3

- Steps 2b and c: Initiated by pulse on 1-3
 - 1-3 triggers Program 5 (via 5i) on both Acc 16 and 18
 - 1-3 triggers Program 26 (via 26i) on constant transmitter
 - Acc 16, Prog 5: operation $\alpha,$ repeat 1
 - Acc 18, Prog 5: operation $\alpha,$ repeat 1
 - Cons Xmit, Prog 26: send J (=1)
 - On completion, Acc 18 output control pulse on 50 connected to 1-2

Configuration

- Step 2d: Initiated by pulse on 1-2
 - 1-2 trigger printer, via Pi on initiating unit
 - On completion of transfer, output control pulse on Po connected to 1-1
 - Pulse on 1-1 restarts the sequence

Simulator Examples

