
Uniqueness and Reference Immutability for Safe Parallelism

Colin S. Gordon†, Matthew J. Parkinson‡, Jared Parsons�, Aleks Bromfield�, Joe Duffy�
†University of Washington, ‡Microsoft Research Cambridge, �Microsoft Corporation
csgordon@cs.washington.edu, {mattpark,jaredpar,albromfi,joedu}@microsoft.com

Abstract
A key challenge for concurrent programming is that side-
effects (memory operations) in one thread can affect the be-
havior of another thread. In this paper, we present a type sys-
tem to restrict the updates to memory to prevent these unin-
tended side-effects. We provide a novel combination of im-
mutable and unique (isolated) types that ensures safe paral-
lelism (race freedom and deterministic execution). The type
system includes support for polymorphism over type quali-
fiers, and can easily create cycles of immutable objects. Key
to the system’s flexibility is the ability to recover immutable
or externally unique references after violating uniqueness
without any explicit alias tracking. Our type system models
a prototype extension to C# that is in active use by a Mi-
crosoft team. We describe their experiences building large
systems with this extension. We prove the soundness of the
type system by an embedding into a program logic.

Categories and Subject Descriptors D.3.3 [Language
Constructs and Features]: Concurrent programming struc-
tures; F.3.2 [Semantics of Programming Languages]: Pro-
gram Analysis

General Terms Languages, Verification

Keywords reference immutability, type systems, concur-
rency, views

1. Introduction
In concurrent programs, side-effects in one thread can affect
the behavior of another thread. This makes programs hard
to understand as programmers must consider the context in
which their thread executes. In a relaxed memory setting
even understanding the possible interactions is non-trivial.

We wish to restrict, or tame, side-effects to make pro-
grams easier to maintain and understand. To do so, we build

Permission to make digital or hard copies of all or part of this work for personal or
classroom use is granted without fee provided that copies are not made or distributed
for profit or commercial advantage and that copies bear this notice and the full citation
on the first page. To copy otherwise, to republish, to post on servers or to redistribute
to lists, requires prior specific permission and/or a fee.
OOPSLA’12, October 19–26, 2012, Tucson, Arizona, USA.
Copyright c© 2012 ACM 978-1-4503-1561-6/12/10. . . $10.00

on reference immutability [37, 39, 40], which uses permis-
sion type qualifiers to control object mutation. Typically
there are notions of writable references (normal access),
read-only references (objects may not be mutated via a read-
only reference, and field reads from read-only references
produce read-only references), and immutable references
(whose referents may never be changed through any alias).
There are many applications of this approach to controlling
side effects, ranging from improving code understanding to
test generation to compiler optimization.

We add to reference immutability a notion of isolation in
the form of an extension to external uniqueness [23]. We
support the natural use of isolation for object immutabil-
ity (making objects permanently immutable through all ref-
erences). But we also show a new use: to recover isola-
tion or strengthen immutability assumptions without any
alias tracking. To achieve this we give two novel typing
rules, which allow recovering isolated or immutable refer-
ences from arbitrary code checked in environments contain-
ing only isolated or immutable inputs.

We provide two forms of parallelism:

Symmetric Assuming that at most one thread may hold
writable references to an object at a given point in time,
then while all writable references in a context are tem-
porarily forgotten (framed away, in the separation logic
sense [29, 33]), it becomes safe to share all read-only
or immutable references among multiple threads, in ad-
dition to partitioning externally-unique clusters between
threads.

Asymmetric If all data accessible to a new thread is im-
mutable or from externally-unique clusters which are
made inaccessible to the spawning thread, then the new
and old threads may run in parallel without interference.

We provide an extended version of the type system with
polymorphism over reference immutability qualifiers. This
maintains precision for instantiated uses even through rich
patterns like iterators, which was not possible in previous
work [39].

There are several aspects of this work which we are the
first to do. We are the first to give a denotational meaning to
reference immutability qualifiers. We are the first to formal-
ize the use of reference immutability for safe parallelism. We

Figure 1. External uniqueness with immutable out-
references.

are the first to describe industry experience with a reference
immutability type system.

2. Reference Immutability, Uniqueness, and
Parallelism

Reference immutability is based on a set of permission-
qualified types. Our system has four qualifiers:

writable: An “ordinary” object reference, which allows mu-
tation of its referent.

readable: A read-only reference, which allows no mu-
tation of its referent. Furthermore, no heap traversal
through a read-only reference produces a writable ref-
erence (writable references to the same objects may exist
and be reachable elsewhere, just not through a readable
reference). A readable reference may also refer to an im-
mutable object.

immutable: A read-only reference which additionally notes
that its referent can never be mutated through any refer-
ence. Immutable references may be aliased by read-only
or immutable references, but no other kind of reference.
All objects reachable from an immutable reference are
also immutable.

isolated: An external reference to an externally-unique
object cluster. External uniqueness naturally captures
thread locality of data. An externally-unique aggregate
is a cluster of objects that freely reference each other,
but for which only one external reference into the ag-
gregate exists. We define isolation slightly differently
from most work on external uniqueness because we also
have immutable objects: all paths to non-immutable ob-
jects reachable from the isolated reference pass through
the isolated reference. We allow references out of the
externally-unique aggregate to immutable data because it
adds flexibility without compromising our uses for iso-
lation: converting clusters to immutable, and support-
ing non-interference among threads (see Figure 1). This
change in definition does limit some traditional uses of
externally-unique references that are not our focus, such
as resource management tasks.

The most obvious use for reference immutability is to con-
trol where heap modification may occur in a program, simi-

readable

↗ ↖
writable immutable

↖ ↗
isolated

Figure 2. Qualifier conversion/subtyping lattice.

lar to the owner-as-modifier discipline in ownership and uni-
verse type systems [14]. For example, a developer can be
sure that a library call to a static method with the type signa-
ture

int countElements(readable ElementList lst);

will not modify the list or its elements (through the lst

reference). Accessing any field of the argument lst through
the readable reference passed will produce other readable
(or immutable) results. For example, a developer could not
implement countElements like so:

int countElements(readable ElementList lst)

{ lst.head = null; return 0; }

because the compiler would issue a type error. In fact, any
attempt within countElements() to modify the list would
result in a type error, because lst is deeply (transitively)
read-only, and writes through read-only references are pro-
hibited.

2.1 Conversion from Isolated
The isolated qualifier is atypical in reference immutability
work, and is not truly a permission for (im)mutability in the
purest sense. In fact, we require that isolated references
be converted through subtyping to another permission before
use, according to the type qualifier hierarchy in Figure 2.

isolated references are particularly important in our
system for two reasons. First, they naturally support safe
parallelism by partitioning mutable data amongst threads.
The threads1 in the following example cannot interfere with
each other, because the object graphs they operate on and
can mutate are disjoint:

isolated IntList l1 = ...;

isolated IntList l2 = ...;

{ l1.map(new Incrementor()); }

|| { l2.map(new Incrementor()); }

Second, the control of aliasing allows conversion of whole
externally-unique object clusters. If there are no external ref-
erences besides the isolated reference, then the whole ob-
ject graph (up to immutable objects) can be converted at
once. An isolated reference (and object graph) can triv-
ially be converted to writable, by essentially surrendering
the aliasing information:

1 We use ‖ for structured parallelism, and the formal system does not have
dynamic thread creation.

isolated IntList l = ...;

// implicitly update l’s permission to writable

l.head = ...;

Or an isolated graph can be converted to immutable; as
with any form of strong update, the decision to treat the
whole object graph as immutable is localized:

isolated IntList l = ...;

// implicitly update l’s permission to immutable

immutable IntList l2 = l;

l.head = ...; // Type Error!

The type system is flow sensitive, so although l was initially
isolated after the assignment to l2 it has been coerced to
immutable and thus cannot be written to.

2.2 Recovering Isolation
A key insight of our approach is that converting an isolated
reference to writable does not require permanently sur-
rendering the aliasing information. In particular, if the input
type context for an expression contains only isolated and im-
mutable objects, then if the output context contains a single
writable reference, we can convert that reference back to
isolated. Consider the following method:

isolated IntBox increment(isolated IntBox b) {

// implicitly convert b to writable

b.value++;

// convert b *back* to isolated

return b;

}

The first conversion from isolated to writable occurs
naturally by losing aliasing information. The second conver-
sion is safe because if one writable reference is left when
the initial context contained only isolated and immutable
references, that reference must either refer to an object that
was not referenced from elsewhere on entry, or was freshly
allocated (our core language and prototype do not allow mu-
table global variables).

This flexibility is especially useful for algorithms that re-
peatedly map destructive operations over data in parallel. By
keeping data elements as isolated, the map operations nat-
urally parallelize, but each task thread can internally violate
uniqueness, apply the updates, and recover an isolated

reference for the spawning context for later parallelization
(Section 2.5).

Recovering isolation is reminiscent of borrowing — al-
lowing temporary aliases of a unique reference, often in a
scope-delimited region of program text. The main advantage
of recovery is that unlike all borrowing designs we are aware
of, recovery requires no tracking or invalidation of specific
references or capabilities as in other work [10, 23]. Of course
this is a result of adding reference immutability, so recovery
is not a stand-alone replacement for traditional borrowing; it
is an additional benefit of reference immutability.

We also see two slight advantages to our recovery ap-
proach. First, a single use of recovery may subsume multiple

uses of a scoped approach to borrowing [30], where exter-
nal uniqueness is preserved by permitting access to only the
interior of a particular aggregate within a lexically scoped
region of code. Of course, scopeless approaches to borrow-
ing exist with more complex tracking [10, 23]. Second, no
special source construct is necessary beyond the reference
immutability qualifiers already present for parallelism.

2.3 Recovering Immutability, and Cycles of
Immutable Objects

Another advantage of using isolated references is that the
decision to make data immutable can be deferred (arbitrar-
ily). This makes constructing cycles of immutable objects
easy and natural to support. The mechanism for converting
an isolated reference to immutable is similar to recover-
ing isolation, with the natural direct conversion being a spe-
cial case. If the input context when checking an expression
contains only isolated and immutable references, and the
output context contains one readable reference (or in gen-
eral, multiple readable references), then the readable refer-
ent must be either an already-immutable object or an object
not aliased elsewhere that it is safe to now call immutable.
The simplest case of this (equivalent to direct conversion) is
to frame away all references but one, convert to readable,
and then recover immutability:

immutable IntBox freeze(isolated IntBox b) {

// implicitly convert b to readable

// implicitly recover immutability;

// the input context was all isolated

return b;

}

Creating cycles of immutable objects is then simply
a matter of restricting the input to a conversion to only
isolated and immutable data, then recovering. This can
even include recovering immutability from regular code:

// The default permission is writable

CircularListNode make2NodeList() {

CircularListNode n1 = new CircularListNode();

CircularListNode n2 = new CircularListNode();

n1.next = n2; n1.prev = n2;

n2.next = n1; n2.prev = n1;

return n1;

}

...

immutable l = make2NodeList();

Here the method has no inputs and it returns a writable
value, so at the call site anything it returns can be consid-
ered readable, then recovered to immutable (or directly
recovered to isolated).

Prior reference immutability systems [39] required build-
ing immutable cyclic data structures in the constructor of one
object, using extensions to pass a partially-initialized object
during construction as (effectively) immutable to the con-
structor of another object. Our use of isolated with recov-

ery means we do not need to explicitly model the initializa-
tion period of immutable structures.

While we have been using closed static method defini-
tions to illustrate the recovery rules, our system includes a
frame rule [29, 33], so these conversions may occur in local-
ized sections of code in a larger context.

2.4 Safe Symmetric Parallelism
Fork-join concurrency is deterministic when neither forked
thread interferes with the other by writing to shared memory.
Intuitively, proving its safe use requires separating read and
write effects, as in Deterministic Parallel Java (DPJ) [4].
With reference immutability, a simpler approach is available
that does not require explicit region management, allowing
much of the same expressiveness with simpler annotation
(see Section 7).

If neither forked thread requires any writable reference
inputs to type check, then it is safe to parallelize, even if
the threads share a readable reference to an object that
may be mutated later, and even if threads receive isolated
references.

x = new Integer(); x.val = 3; y = x; z = x;

// y and z are readable aliases of x

a = new Integer(); b = new Integer();

// a and b are isolated

// frame away writable references (x)

a.val = y.val; || b.val = z.val;

// get back writable references (x)

x.val = 4;

After joining, x may be “unframed” and the code regains
writable access to it. Safety for this style of parallelism is a
natural result of reference immutability, but proving it sound
(race free) requires careful handling of coexisting writable
references to the temporarily-shared objects.

We require that each thread in the parallel composition re-
ceives disjoint portions of the stack, though richer treatments
of variable sharing across threads exist [31, 32].

2.5 Safe Asymmetric Parallelism
C# has an async construct that may execute a block of
code asynchronously via an interleaving state machine or
on a new thread [3], and returns a handle for the block’s
result in the style of promises or futures. A common use
case is asynchronously computing on separated state while
the main computation continues. Our formal system models
the asymmetric data sharing of this style of use on top of
structured parallelism. The formal system (Section 3) does
not model the first-class join; in future work we intend to
extend this rule to properly isolate async expressions.

A natural use for this style of parallelism is to have the
asynchronous block process a limited data set in parallel
with a “main” thread’s execution. One definition of “limited”
is to restrict the “worker” thread to isolated and immutable
data, allowing the “main” thread to proceed in parallel while
retaining writable references it may have.

writable Integer x = ...;

// construct isolated list of isolated integers

y = new IsolatedIntegerList();

... // populate list

f = new SortFunc();

// Sort in parallel with other work

y.map(f); || x.val = 3;

This code also demonstrates the flexibility of combining
the rules for recovering isolated or immutable references
with parallelism. In the left thread, f and y are both isolated
on entry, and the rule for recovering an isolated reference
can be applied to y at that thread’s finish. Thus, when the
threads join, y is again isolated, and suitable for further
parallelization or full or partial conversion to immutable.

3. Types for Reference Immutability and
Parallelism

We describe a simple core imperative, object-oriented lan-
guage in Figure 3. Commands (statements) include standard
field and variable assignments and reads, sequencing, loops,
non-deterministic choice (to model conditional statements)
and fork-join style parallelism. Our language also includes a
destructive read, x = consume(y.f), which reads the field,
y.f , stores its value in x, and then updates the field to null.
Our types include primitive types and permission-qualified
class types. We include the four permissions from Section
2: readable, writable, isolated, and immutable. This
section focuses on the language without methods, which are
added in Section 3.3. Polymorphism, over both class types
and permissions, is described in Section 5.

One of our primary goals for this core system is to under-
stand the design space for source languages with reference
immutability and concurrency in terms of an intermediate-
level target language. This approach permits understanding
source-level proposals for typing higher level language fea-
tures (such as closures) in terms of translation to a well-
typed intermediate form (such as the function objects C#
closures compile into), rather than independently reasoning
about their source level behavior.

The heart of reference immutability is that a reference’s
permission applies transitively. Any new references acquired
through a reference with a given permission cannot allow
modifications that the root reference disallows. We model
this through a permission combining relation B, borrowing
intuition and notation from universe types’ “viewpoint adap-
tation” [14]. We define B and lift it to combining with types
in Figure 3.

Generally speaking, this relation propagates the weak-
est, or least permissive, permission. Notice that there are
no permission-combining rules for isolated receivers and
non-immutable fields; this reflects the requirement that ac-
cessing an isolated object graph generally requires upcast-
ing variables first and accessing isolated fields requires
destructive reads. Also notice that any combination involv-

Metavariables

a atoms
C command (statement)
w, x, y, z variables
t, u types
T,U class type
TD class type declaration
cn class name
p permission
fld field declaration
meth method declaration
f, g field names
m method names
n, i, j nat (indices)

Syntax

a ::=
| x = y
| x.f = y
| x = y.f
| x = consume(y.f)
| x = y.m(z1, ..., zn)
| x = new t()
| return x

C ::= a | skip | C;C | C + C | C‖C | C∗
p ::= readable | writable | immutable | isolated

T ::= cn
TD ::= class cn [<: T2] {field ∗ meth∗ }
fld ::= t fn
meth ::= t m(t1 x1, ..., tn xn)p{ C; return x ; }
t ::= int | bool | p T
Γ ::= ε | Γ, x : t

B : Permission→ Permission→ Permission
immutableB = immutable

B immutable = immutable

readableB writable = readable

readableB readable = readable

writableB readable = readable

writableB writable = writable

pB int = int

pB bool = bool

pB (p′ T) = (pB p′) T

Figure 3. Core language syntax.

ing immutable permissions produces an immutable permis-
sion; any object reachable from an immutable object is also
immutable, regardless of a field’s declared permission.

We use type environments Γ, and define subtyping on en-
vironments (` Γ ≺ Γ) in terms of subtyping for permissions
(` p ≺ p), class types (` T ≺ T), and permission-qualified
types (` t ≺ t) in Figure 4.

Figure 5 gives the core typing rules. These are mostly
standard aside from the treatment of unique references. A
destructive field read (T-FIELDCONSUME) is fairly stan-
dard, and corresponds dynamically to a basic destructive
read: as the command assigns null to the field, it is sound
to return an isolated reference. Writes to isolated fields
(T-FIELDWRITE) and method calls with unique arguments
(T-CALL) treat the isolated input references as affine re-
sources, consumed by the operation. We use a metafunction
RemIso() to drop “used” isolated references:

` p ≺ p′ ` p ≺ p ` p ≺ readable ` isolated ≺ p

` T ≺ T ′
class c <: d {fld meth } ∈ P

` c ≺ d S-DECL

` t1 ≺ t2
` p ≺ p′

` p T ≺ p′ T
S-PERM

` T ≺ T ′

` p T ≺ p T ′
S-TYPE

` t ≺ t S-REFLEXIVE
` t1 ≺ t2 ` t2 ≺ t3

` t1 ≺ t3
S-TRANS

` Γ ≺ Γ′ ε ≺ ε S-EMPTY
` Γ ≺ Γ′ ` t ≺ t′

` Γ, x : t ≺ Γ′, x : t′
S-CONS

` Γ ≺ Γ′

` Γ, x : t ≺ Γ′
S-DROP

Figure 4. Subtyping rules

RemIso() : Γ→ Γ
RemIso(Γ) = filter (λx. x 6= isolated) Γ

This is a slight inconvenience in the core language, but
the implementation supports consume as a first class effect-
ful expression. The method rule is otherwise straightforward
aside from calls on isolated receivers (Section 3.3). We
also provide structural rules to allow these rules to be used in
more general contexts (last two rows of Figure 5). The def-
inition of well-formed programs is mostly standard (shown
in our technical report [20]), aside from requiring covariant
method permissions for method overrides (Figure 6).

3.1 Recovery Rules
Figure 7 gives the two promotion rules from Sections 2.2
and 2.3 that are key to our system’s flexibility: the rules
for recovering isolated or immutable references, used for
both precision and conversion. These rules restrict their in-
put contexts to primitives, externally unique references, and
immutable references. The T-RECOVISO, checks the vari-
able in the premise x must either be null, or point into a
freshly-allocated or previously present (in Γ) object aggre-
gate with no other references, and thus it is valid to consider
it isolated. Similarly T-RECOVIMM checks sufficient prop-
erties to establish that it is safe to consider it immutable. In
practice, using these relies on the frame rule (Figure 5).

Without reference immutability, such simple rules for re-
covery (sometimes called borrowing) would not be possi-
ble. In some sense, the information about permissions in
the rules’ input contexts gives us “permissions for free.”
We may essentially ignore particular permissions (isolation)
for a block of commands, because knowledge of the input
context ensures the writable or readable output in each
premise is sufficiently separated to convert if necessary (tak-
ing advantage of our slight weakening of external unique-
ness to admit references to shared immutable objects). Sec-
tion 4.2 elaborates on the details of why we can prove this

Γ1 ` C a Γ2

t 6= isolated

x : , y : t ` x = y a y : t, x : t
T-ASSIGNVAR ` x = new T () a x : isolated T

T-NEW

t′ f ∈ T p 6= isolated ∨ t′ = immutable t′ 6= isolated ∨ p = immutable

x : , y : p T ` x = y.f a y : p T, x : pB t′
T-FIELDREAD

t f ∈ T
y : writable T, x : t ` y.f = x a y : writable T,RemIso(x : t)

T-FIELDWRITE

isolated Tf f ∈ T
y : writable T ` x = consume(y.f) a y : writable T, x : isolated Tf

T-FIELDCONSUME

x : ` x = n a x : int
T-INT

x : ` x = b a x : bool
T-BOOL

x : ` x = null a x : p T
T-NULL

t′ m(u′ z′) p′ ∈ T ` p ≺ p′ ` u ≺ u′
p = isolated =⇒ t 6= readable ∧ t 6= writable ∧ IsoOrImm(z : t) ∧ p′ 6= immutable

y : p T, z : u ` x = y.m(z) a y : p T,RemIso(z : t), x : t′
T-CALL

Γ1 ≺ Γ′1 Γ′1 ` C a Γ′2 Γ′2 ≺ Γ2

Γ1 ` C a Γ2
T-SUBENV

Γ1 ` C a Γ2

Γ,Γ1 ` C a Γ,Γ2
T-FRAME

Γ ` C a Γ
Γ ` C∗ a Γ

T-LOOP

Γ1 ` C1 a Γ2 Γ2 ` C2 a Γ3

Γ1 ` C1;C2 a Γ3
T-SEQ

Γ1 ` C1 a Γ2 Γ1 ` C2 a Γ2

Γ1 ` C1 + C2 a Γ2
T-BRANCH

Γ, y : t′, x : t,Γ′ ` C a Γ′′

Γ, x : t, y : t′,Γ′ ` C a Γ′′
T-SHUFFLE

Figure 5. Core typing rules.

TD = class cn [<: T2] {fld meth } t′ m(t′ x′) p′ ∈ T2 P ` t ≺ t′ P ` p′ ≺ p P ` t′ ≺ t
p 6= isolated ∀i ∈ [1 . . . n]. P ` ti P ` t this : p cn, t x ` C; return x a result : t

P ;TD ` t m(t x) p { C; return x ; }
T-METHOD2

Figure 6. Method override definition typing

IsoOrImm(Γ) IsoOrImm(Γ′)
Γ ` C a Γ′, x : writable T

Γ ` C a Γ′, x : isolated T
T-RECOVISO

IsoOrImm(Γ) IsoOrImm(Γ′)
Γ ` C a Γ′, x : readable T

Γ ` C a Γ′, x : immutable T
T-RECOVIMM

where IsoOrImm(Γ)
def
= ∀(x : p T) ∈ Γ. ` p ≺ immutable

Figure 7. Recovery rules

is sound. Additionally, the permission qualifications spec-
ify which references may safely interact with an externally-
unique aggregate, and which must be prevented from inter-
acting via the frame rule (readable and writable refer-
ences). This distinction normally requires precise reasoning
about aliases.

3.2 Safe Parallelism
Figure 8 gives the rules for safe parallelism. They ensure
data race freedom, and therefore (for the concurrency prim-
itives we provide) deterministic execution. T-PAR corre-
sponds to safe symmetric parallelism, when all writable
references are framed out. The second rule T-ASYNC cor-

NoWrit(Γ1) NoWrit(Γ2) Γ1 ` C1 a Γ′1 Γ2 ` C2 a Γ′2

Γ1,Γ2 ` C1||C2 a Γ′1,Γ
′
2

T-PAR

IsoOrImm(Γ1) Γ1 ` C1 a Γ′1 Γ2 ` C2 a Γ′2

Γ1,Γ2 ` C1||C2 a Γ′1,Γ
′
2

T-ASYNC

where NoWrit(Γ)
def
= ∀(x : p T) ∈ Γ. p 6= writable

Figure 8. Type rules for safe parallelism. IsoOrImm is de-
fined in Figure 7

responds to the safety criteria for asymmetric parallelism
(named for C#’s async block). This rule obviously produces
structured parallelism, not the unstructured task-based con-
currency present in C#. But it models the state separation
required for safe task parallelism: all input to a task must
be isolated or immutable. The implementation provides safe
task parallelism of this form, as described in Section 6.1, as
well as structured parallelism.

3.3 Methods
The type rule for a method call (T-CALL) is shown in Fig-
ure 5. It is mostly standard (the method exists in the receiver
type, actual arguments are subtypes of formal arguments),

with a couple of complications. First, isolated actual ar-
guments are forgotten by the typing context, in lieu of ex-
tending the method syntax for destructive reads.

Second, methods have required calling permissions, which
restrict the side effects a method may have on the receiver.
The permission on the receiver at the call site must be at least
as permissive as the required permission (e.g., a program
cannot call a writable method on a readable receiver).
This is standard for reference immutability [37, 39, 40].

Finally, additional restrictions apply when the receiver is
isolated. Intuitively, no isolated method may return an alias
to an object inside its isolation bubble; alternatively, the re-
strictions ensure that an inlined method body is suitable for
upcasting the isolated receiver’s permission, executing,
and finally applying T-RecovIso. Because no method is
type checked with this : isolated T (by T-METHOD*
in Figure 6 and our technical report [20], no method may
require an isolated receiver permission), no method may
leverage recovery rules (Figure 7) to recover an isolated

or immutable reference to its receiver. Thus any meth-
ods returning primitives (int and bool) or isolated or
immutable references is returning a value that does not vi-
olate external uniqueness for the receiver’s bubble.

3.4 Examples
For brevity, because the type environment is flow sensitive,
we write typing derivations in the same style as a proof in a
program logic, with pre- and post-conditions of a statement
in braces before and afterwards. Unmarked adjacent asser-
tions represent use of the rule of implication (subtyping).
Uses of other transformation rules are labeled. In Section 4,
it will become clear how this style directly models the cor-
responding proof of type checking in the program logic.

3.4.1 Assigning an Isolated Variable
Assigning an isolated variable consists of framing away
outer context, upcasting the isolated reference to writable,
assigning normally, weakening to drop the source variable,
and an application of T-RECOVISO to recover the isolation
property on the destination variable. It is possible to add an
admissible rule for the direct consumption. It is also possible
to preserve access to the source variable by also overwriting
it with a primitive value such as null, which is equivalent to
an encoding of a traditional destructive read on a variable.

{Γ, x : bool, y : isolated T}
{x : bool, y : isolated T}
{x : bool, y : isolated T}
{x : bool, y : writable T}
x = y
{x : writable T, y : writable T}
{x : writable T}

−

T-
S

U
B

E
N

V

{x : isolated T}

−

T-
R

E
C

O
V

IS
O

{Γ, x : isolated T}

−

T-
F

R
A

M
E

3.4.2 Temporarily Violating Isolation
Figure 9 shows the type derivation for a simple use of the
T-RECOVISO rule, adding a node to an isolated list. The
inner portion of the derivation is not notable, simply natural
use of sequencing, allocation, and field write rules. But that
inner portion is wrapped by a use of subtyping, followed
by recovering an isolated reference. Using T-RECOVIMM
to recover an immutable reference would be similar, using
a readable reference to the list after the updates.

4. Type Soundness
To prove soundness, we must define the dynamic language
semantics and relate the typing rules. The dynamic seman-
tics for commands C are standard small step operational se-
mantics over the states we define below, so we omit them
here. The operational rule for reducing an atom a appeals
to a denotational semantics of atoms, which is defined in
an entirely standard way and therefore also omitted (method
calls have some subtlety, but conform to standard intuition of
evaluating method calls by inlining method bodies, fully de-
tailed in our technical report [20]). We relate the type rules to
the semantics by defining a denotation of type environments
in terms of an extended machine state.

We define abstract machine states as:

S def
= Stack× Heap× TypeMap

where Stack
def
= Var ⇀ Val and is ranged over by s, Heap

def
=

OID×Field ⇀ Val and is ranged over by h, and TypeMap
def
=

OID ⇀ Class and is ranged over by t.
We only consider well-typed states. To define well-typed

states, we assume a function that gives the type and permis-
sion for each field of each class, reflects inheritance of fields,
and in Section 5 handles instantiating field types of polymor-
phic types:

FType : Class× Field→ Type

We can describe a state (s, h, t) as well-typed iff

WellTyped(s, h, t) = ∀o, f.
(∃v. h(o, f) = v)

⇐⇒ (∃ft .FType(t(o), f) = ft)
∧ ∀ft .FType(t(o), f) = ft =⇒ft = p c′ ∧ h(o, f) 6= null =⇒ ` t(h(o, f)) ≺ c′

∧ ft = bool =⇒ ∃b. h(o, f) = b
∧ ft = int =⇒ ∃n. h(o, f) = n

The first conjunct requires that the type map contains a type
for every object in the heap, and vice-versa; it limits the
type map to the heap contents. The second conjunct simply
enforces that each field holds well-typed contents.

Reasoning about which objects are immutable and the
permissions of various references is somewhat difficult for
such a basic state space, so we define an instrumented state
with additional metadata: a partitioning of objects among

{x : isolated Node, y : int, z : bool}
{x : isolated Node, y : int, z : bool}
{x : writable Node, y : int, z : bool}
{x : writable Node, y : int, z : bool}
y=new Node();
{x : writable Node, y : writable Node, z : bool}

−

T-
A

L
L

O
C

z=x.next;
{x : writable Node, y : writable Node, z : writable Node}
y.next=z;
{x : writable Node, y : writable Node, z : writable Node}
z.prev=y;
{x : writable Node, y : writable Node, z : writable Node}
y.prev=x;
{x : writable Node, y : writable Node, z : writable Node}
x.next=y;
{x : writable Node, y : writable Node, z : writable Node}
{x : writable Node, y : writable Node, z : writable Node}

−

T-
S

E
Q
∗

ac
ro

ss
T-

F
IE

L
D

R
E

A
D

an
d

T-
F

IE
L

D
W

R
IT

E

{x : writable Node}

−

T-
S

U
B

E
N

V

{x : isolated Node}

−

T-
R

E
C

O
V

IS
O

Figure 9. Typing derivation for adding a node to an isolated doubly-linked list.

regions, and permission to each region (important for safe
parallelism).

We map each object to a region

r : RegionMap = OID ⇀ Region

We have three forms of region:

• Root(ρ) is a root region with abstract root ρ
• Field(o, f) means the region is only accessible through

the isolated field f of object o.
• Immutable means immutable

We associate two permissions with each root region:

π : RegionPerm = Root ⇀ Update[0, 1]× Reference(0, 1]

where

• Update: Is used to indicate if objects in the region can
be modified. Full (1) means this is the case. An update
permission will be split for the period of a parallel com-
position, as a fractional permission [9].
• Reference: Is used to indicate whether there is a framed-

out reference to this region (< 1). This prevents the con-
version of a region to isolated or immutable when there
are framed-out readable or writable references to it.
Note that 0 reference permission is not allowed; states
with no permission at all to a region do not have that per-
mission in their permission map.

For both permissions, the total permission available to the
program for any given region is 1. These two permission
types capture two interference concepts. You can interfere
with yourself; and you cannot interfere with other threads.
Interference with other threads is prevented by the update

permission, only one thread can ever have an update permis-
sion to a region.

These states also satisfy a well-formedness predicates.
We require instrumented states to be well-regioned: e.g.
an immutable reference points to an object in region Im-
mutable, no readable or writable reference outside a
given externally unique aggregate points to an object in an
isolated region, etc. We define well-regioned given in Fig-
ure 10. The first conjunct ensures full region information for
the heap’s objects. The second, largest conjunct enforces re-
strictions on references between regions. Intra-region point-
ers must be either within the Immutable region, or following
readable or writable fields. Cross-region pointers must
not be pointing out of Immutable (which is closed under
field dereference), and must either pointing into Immutable
from fields with appropriate permissions, an isolated field
pointing into an appropriate Field region, or a readable

reference between root regions. The next conjunct requires
permissions on any root region, and the final conjunct lim-
its the region map’s Fields to those whose entry points are
present in the heap.

We can thus define an instrumented state as:

M =

{
m ∈ S × RegionMap× RegionPerm
|WellRegioned(m) ∧WellTyped(bmc)

}
where we define an erasure b·c : M → S that projects in-
strumented states to the common components with S . We
use m.s, m.h, m.t, m.r, and m.π to access the stack, heap,
type map, region map and region permission map, respec-
tively.

We view type environments denotationally, in terms of
the set of instrumented states permitted by a given envi-

WellRegioned(s, h, t, r, π) =
CompleteRegionInfo(s, h, t, r, π)∧
∀o, f, v, p. h(o, f) = v ∧ v ∈ OID ∧ FType(t(o), f) = p
=⇒(r(o) = r(v) =⇒

r(o) = Immutable ∨ p ∈ {readable, writable})
∧ (r(o) 6= r(v) =⇒ ValidXRegionRef(r, o, f, p, v))

∧ (∀ρ.Root ρ ∈ Img(r) =⇒ π(ρ)(≥, >)(0, 0))
∧ (∀o, f.Field(o, f) ∈ Img(r) =⇒ (o, f) ∈ dom(h))

where

ValidXRegionRef(r, o, f, p, v) =
(r(o) 6= Immutable)
∧ (r(v) = Immutable =⇒ p ∈ {immutable, readable})
∧ (r(v) = Field(o, f) =⇒ p = isolated)
∧ (r(v) = Root() =⇒ p = readable ∧ r(o) = Root())

CompleteRegionInfo(s, h, t, r, π) = ∀o, f. h(o, f) defined =⇒

t(o) defined ∧ r(o) defined ∧
(∀ρ. r(o) = Root(ρ) =⇒ π(ρ) defined)

∧(∀o, r(o) defined =⇒ ∃f, h(o, f) defined)

Figure 10. Definition of Well-Regioned

ronment. Figure 11 defines the type environment denota-
tion JΓKπ . Isolated and immutable denotations are mostly
straightforward, though they rely on a notion of partial sep-
arating conjunction ∗ of instrumented states. To define this
separation, we must first define composition of instrumented
states •:

• = (•⇀, •∪, •∪, •∪, •π)

where

s ∈ (s1 •⇀ s2)
def
= dom(s1) ∩ dom(s2) = ∅ ∧ s = s1 ∪ s2

x ∈ (x1 •∪ x2)
def
= x = x1 ∪ x2

π ∈ (π1 •π π2)
def
= ∀ρ. π(ρ) = π1(ρ)(+,+)π2(ρ)

Partial separating conjunction then simply requires the exis-
tence of two states that compose:

m ∈ P ∗Q def
= ∃m′.∃m′′.m′ ∈ P ∧m′′ ∈ Q∧m ∈ m′ •m′′

This partial separation makes denotation of immutable or
isolated references mostly independent of other state. For ex-
ample, an isolated reference in the environment must be
the only reference to some root region, and it must be pos-
sible to split that full permission away from the state de-
scribed by the rest of the environment without invaliding
other parts of the context. We cannot define the meaning of
readable and writable individually, because we need an
externally visible bound on the regions involved in denot-
ing a readable or writable reference when proving con-
versions (T-RECOVISO and T-RECOVIMM) sound. We give
the meaning of a typing context with respect to some local

Jx : isolated T K =
m ∈M m.π(m.r(m.s(x))) = (1, 1)

∧m.t(m.s(x)) = T ′∧ ` T ′ ≺ T
∧RootClosed(m.r(m.s(x)),m)
∨m.s(x) = null

Jx : immutable T K =

m ∈M m.r(m.s(x)) = Immutable
∧m.t(m.s(x)) = T ′∧ ` T ′ ≺ T
∨m.s(x) = null

Jx : readable T Kπ =

m ∈M m.s(x) = null∨
((∃ρ.Up(π(ρ)) > 0 ∧ Up(m.π(ρ)) > 0
∧m.r(m.s(x)) = Root ρ)

∨m.r(m.s(x)) = Immutable)
∧m.t(m.s(x)) = T ′∧ ` T ′ ≺ T

Jx : writable T Kπ =

m ∈M m.s(x) = null∨
(∃ρ. π(ρ) = (1,) ∧m.π(ρ) = (1,)
∧m.r(m.s(x)) = Root ρ)
∧m.t(m.s(x)) = T ′∧ ` T ′ ≺ T

JΓ, x : isolated T Kπ = Jx : isolated T K ∗ JΓKπ
JΓ, x : immutable T Kπ = Jx : immutable T K ∗ JΓKπ
JΓ, x : readable T Kπ = Jx : readable T Kπ ∩ JΓKπ
JΓ, x : writable T Kπ = Jx : writable T Kπ ∩ JΓKπ
JεKπ =

m ∈M m.π ≥ π
∧ (∀ρ ∈ dom(π).Up(π(ρ)) > 0)
∧ ∀o, f, o′.m.r(o) ∈ dom(π) ∧m.h(o, f) = o′

=⇒

m.r(o′) ∈ dom(π) ∨
m.r(o′) = Immutable ∨
m.r(o′) = Field(o, f)

where RootClosed(ρ,m)

def
= ∀o, f, o′.m.r(o) = Root(ρ) ∧m.h(o, f) = o′ =⇒

(m.r(o′) = m.r(o) ∨m.r(o′) = Immutable ∨
m.r(o′) = Field(o, f))

.

Figure 11. Denoting types and type environments.

permission map π, which the denotations of readable and
writable references refer to, in addition to checking per-
missions in the concrete state. Because this π bounds the set
of regions supporting an environment, when π contains only
full permissions we can prove that certain region-changing
operations will not interfere with other threads. It also en-
ables proving parallel composition is race free, as our proof
of safe composition gives full update permission on a shared
region to neither thread, meaning neither thread may denote
a writable reference to a shared object (as in T-PAR).

Section 4.1 briefly describes specifics of how we inter-
act with an existing program logic [15] to prove sound-
ness. Even without reading Section 4.1, the actual sound-
ness proof in Section 4.2 should be understandable enough
to build an intuition for soundness with only intuition for
∗. The proofs are based around a relation v, which can be
viewed as saying what changes to the π and r components of

instrumented states are allowed, such that other threads can
preserve their view of the typing of the state.

4.1 Views Framework
Our soundness proof builds upon a version of the Views
Framework [15], which is in some sense a generalization
of the ideas behind separation logic and rely-guarantee rea-
soning. The definitions we gave in the previous section, S,
M and •, happen to coincide with definitions required by
this framework. Given a few operations and relations over
M, the framework gives a natural structure to the soundness
proof as an embedding of type derivations into the view’s
program logic. To do this we must define:

• An operation • : M → M → M that is commutative
and associative.
• A preorder interference relation R ⊆ M × M that

defines permissible interference on an instrumented state.
The relation must distribute over composition:

∀m1,m2,m. (m1 •m2)Rm =⇒
∃m′1,m′2.m1Rm′1 ∧m2Rm′2 ∧m ∈ m′1 •m′2

• A (left and right) unit to • that is closed wrt to R (in our
case, an instrumented state where all the components are
empty maps).
• A denotation of static assertions (in our case, types) in

terms of instrumented states: JΓKπ as in Figure 11.

Soundness follows from proving that the denotation of a
typing derivation (JΓ ` C a ΓK) respects some lifting of the
operational semantics to instrumented states, by embedding
the typing derivations into a program logic. The advantage
of choosing this approach over a more traditional technique
like syntactic type soundness is that after proving a few
lemmas about how type environment denotations behave
with respect to composition and interference, a number of
typically distinct concepts (including forking and joining
threads, frame rules, and safety of environment reordering)
become straightforward applications of simpler lemmas.

We define the interference permitted by a single action of
another thread (heap modifications) R0 in Figure 4.1. The
interference relation for individual actions allows relatively
little to change. The stack and region permissions must re-
main constant. The types and region map must remain con-
stant, aside from objects initially in Field regions disappear-
ing (as in another view performing a destructive read), new
objects appearing in any region the current view has no up-
date permission for, and moving objects between root re-
gions with no update permission (intuitively, another view
merging two root region contents). The heap has similar re-
strictions, though it additionally permits field changes in root
regions with 0 update permissions. Note that WellTyped and
WellRegioned constrain the domains of the region and type
maps, and the object-only projection of the heap domain, to

(s, h, t, r, π)R0(s′, h′, t′, r′, π′)
def
=

s = s′ ∧ π = π′

∧(∀o, f. h(o, f) 6= h′(o, f) =⇒ π(r(o)) = (0,))

∧

let O = dom(t) in
let O′ = dom(t′) in
(∀o. o ∈ O ∩O′ =⇒

(r(o) 6= r′(o) =⇒
π(r(o)) = (0,) ∧ π(r′(o)) = (0,)))

∧ t(o) = t′(o)
∧ (∀o. o ∈ O \O′ =⇒ r(o) = Field(,))
∧ (∀o. o ∈ O′ \O ∧ r′(o) ∈ dom(π′)

=⇒ π′(r′(o)) = (0,))

Figure 12. The thread interference relationR0.

all be equal. So if an object appears in the region map, it ap-
pears in the type map and heap as well, and so on. We define
the final interference relation R as the reflexive transitive
closure ofR0.

Given the specific definitions of composition and inter-
ference, the Views Framework defines a number of useful
concepts to help structure and simplify the soundness proof.
First, it defines a view as the subset of instrumented states
that are stable under interference:

View
def
= {M ∈ P(M) | R(M) ⊆M}

The program logic is proven sound with respect to views [15],
and our denotation of type environments is a valid view (sta-
ble with respect to R). The framework also describes a use-
ful concept called the view shift operator v, that describes a
way to reinterpret a set of instrumented states as a new set of
instrumented states with the same erasures to S, accounting
for any requirement of other views. It requires that:

p v q def⇐⇒ ∀m ∈M. bp ∗ {m}c ⊆ bq ∗ R({m})c

This specifies how the region information can be changed
soundly. That is, we can only change the region information
such that all other possible threads can maintain compatible
views. This corresponds to precisely what subtyping must
satisfy in a concurrent setting and underlies the majority of
encoding the complex typing rules into the Views Frame-
work.

4.2 Soundness Proof
As mentioned earlier, soundness of a type system in the
Views Framework proceeds by embedding the types’ deno-
tation into a sound program logic [15]. The logic itself con-
tains judgments of the form {p}C{q} for views p and q and
commands C, and the logic’s soundness criteria, subject to
our definitions of composition, interference, etc. satisfying
the required properties, is

Theorem 1 (Views Logic Soundness [15]). If {p}C{q} is
derived in the logic, then for all s ∈ bpc, and s ∈ S, if
(C, s) −→∗ (skip, s′) then s′ ∈ bqc.

Thus because our definitions of S,M, • andR satisfy the
required properties, if every type derivation denotes a valid
derivation in the Views Framework’s logic, then the type
system is sound. We can define the denotation of a typing
judgment as:

JΓ1 ` C a Γ2K
def
=

∀π. (∃ρ. π(ρ) = (1,))⇒ {JΓ1Kπ}C{JΓ2Kπ}

We map each judgement onto a collection of judgements in
the Views Framework. This allows us to encode the rules for
recovery, as the logic does not directly support them. Specif-
ically, closing over π allows us to prove that permissions are
preserved. Thus, if a block of code is encoded with a set of
initially full permissions, it will finish with full permissions,
allowing conversion back to isolated if necessary.

We always require there to be at least one local region
that is writable: (∃ρ. π(ρ) = (1,)). This is required to
prove soundness for the subtyping rule, to allow us to cast
isolated to writable.

Here we describe the major lemmas supporting the
soundness proof, and omit natural but uninteresting lemmas,
such as proving that the denotation of a type environment is
stable under interference. We also omit methods here. When
not otherwise discussed, lemmas are typically proven by in-
duction on a type environment Γ. More details are available
in our extended technical report [20]. To prove soundness
for method calls, we extended the Views Framework with
support for method calls. The semantics are mostly intuitive
(reducing a call statement to an inlined method body with
freshly bound locals), and both the semantics and proof ex-
tensions are described in detail in our technical report [20].

The most important lemmas are those for recovering iso-
lated or immutable references, which prove the soundness of
the type rules T-RECOVISO and T-RECOVIMM:

Lemma 1 (Recovering Isolation).

IsoOrImm(Γ) =⇒ FullPermsOnly(π) =⇒
JΓ, x : writableKπ v JΓ, x : isolatedK∅

Lemma 2 (Recovering Immutability).

IsoOrImm(Γ) =⇒ FullPermsOnly(π) =⇒
JΓ, x : readableKπ v JΓ, x : immutableK∅

Both Lemmas 1 and 2 rely on the fact that readable and
writable references into root regions refer only to regions
in π. Without that restriction, and the fact that the denotation
of type environments separates isolated and immutable

references from regions in π, recovering isolation or im-
mutability would not be possible. Another important factor
for these lemmas is our slight weakening of external unique-
ness, to allow references out of an aggregate into immutable

data; without this, recovering isolation would not be possible
with immutable references in Γ.

Environment subtyping is given by the following lemma.

Lemma 3 (Subtyping Denotation).

(∃ρ. π(ρ) = (1,)) ∧ ` Γ1 ≺ Γ2 =⇒ JΓ1Kπ v JΓ2Kπ

The lemmas for framing (and unframing) parts of the
type environment require defining a weakened type deno-
tation JΓKωπ , described in detail in our expanded technical
report [20]. This denotation is mostly the same as the reg-
ular denotation but requires only a non-zero update per-
mission in π, with 0 update permission in the state, but
checking reference permission against a π matching the “un-
framed” state. This makes the environment unusable for ex-
ecuting commands but retaining enough information to re-
store the environment later. We also use a transformation
function on π to frame out a reference permission, prevent-
ing the recovery rules from being applied in cases where a
readable or writable reference to some region is framed
out: frame out perm (u, r) := (u, r/2).

Lemma 4 (Type Framing).

JΓ,Γ′Kπ v JΓKω(map frame out perm π)∗JΓ
′K(map frame out perm π)

Lemma 5 (Type Unframing).

JΓKω(map frame out perm π)∗JΓ
′K(map frame out perm π) v JΓ,Γ′Kπ

Lemma 6 (Symmetric Decomposition).

NoWrit(Γ) =⇒
JΓ,Γ′Kπ v JΓK(map halve perm π) ∗ JΓ′K(map halve perm π)

Lemma 7 (Join). JΓKπ ∗ JΓ′Kπ′ v JΓ,Γ′Kπ•π′

Lemma 8 (Asymmetric Decomposition).

IsoOrImm(Γ) =⇒ JΓ,Γ′Kπ v JΓK∅ ∗ JΓ′Kπ

Theorem 2 (Type Soundness).

Γ1 ` C a Γ2 =⇒ JΓ1 ` C a Γ2K

Proof. By induction on the derivation Γ1 ` C a Γ2.

5. Polymorphism
Any practical application of this sort of system naturally re-
quires support for polymorphism over type qualifiers. Oth-
erwise code must be duplicated, for example, for each pos-
sible permission of a collection and each possible permis-
sion for the objects contained within a collection. Of course,
polymorphism over unique and non-unique references with
mutable state still lacks a clean solution due to the presence
of destructive reads (using a destructively-reading collection
for non-unique elements would significantly alter semantics,
though in the pure setting some clever techniques exist [26]).

To that end we also develop a variant of the system with
both type and method polymorphism, over class types and
permissions. As in C#, we allow a sort of dependent kind-
ing for type parameters, allowing type and permission pa-
rameters to bound each other (without creating a cycle of
bounding). We separate permission parameters from class
parameters for simplicity and expressivity. A source level
variant may wish to take a single sort of parameter that quan-
tifies over a permission-qualified type as in IGJ [39]. There
is a straightforward embedding from those constraints to the
more primitive constraints we use, and our separation makes
our language suitable as an intermediate language that can
be targeted by variants of a source language that may change
over time.

Figure 13 gives the grammar extensions for the polymor-
phic system. Our language permits bounding a polymorphic
permission by any other permission, including other permis-
sion parameters, and by concrete permissions that produce
parameters with only a single valid instantiation (such as
immutable). This allows for future extensions, for example
distinguishing multiple immutable data sources. We add a
context ∆ containing type bounds to the typing and subtyp-
ing judgements. We extend the previous typing and subtyp-
ing rules in the obvious way. ∆ is invariant for the duration
of checking a piece of code, and the main soundness the-
orem, restated below, relies on an executing program hav-
ing an empty ∆ (a program instantiates all type and permis-
sion parameters to concrete classes and permissions). Con-
cretely, type judgements and subtyping judgements now take
the forms:

∆ | Γ ` C a Γ ∆ ` t ≺ t

Figure 14 gives auxiliary judgements and metafunctions
used in the polymorphic system. Most of the extensions are
straightforward, leveraging bounds in ∆ to type check inter-
actions with generic permissions and class types. We discuss
a couple of the most interesting rules here, presenting the full
type system in our technical report [20].

One of the most interesting rules is the field read:

t′ f ∈ T p 6= isolated ∨ t′ = immutable

t′ 6= isolated ∨ p = immutable

∆ | x : , y : p T ` x = y.f a y : p T, x : pB∆ t′

It uses a variant of permission combining parameterized by
∆, given in Figure 14, and lifted to types as before. When
reading the definition of B∆, bear in mind that no permis-
sion variable may ever be instantiated to isolated. The fi-
nal case of B∆ produces a deferred permission combination
(p p). The two cases previous to it that combine uninstan-
tiated permission parameters leverage the bounding relation
in ∆ to give a sound answer that might produce writable

or immutable results that can be used locally (though in
the case that P is instantiated to immutable, this can lose
some precision compared to instantiated uses). In the unre-
lated case, there is always an answer to give: readable. But

class cn〈X〉〈P 〉 where . . . {field t f field method} ∈ P
t[P/p,X/T] f ∈ cn〈T 〉〈p〉

class cn〈X〉〈P 〉 where . . . {field method} ∈ P m ∈ method
m = t′ m〈Y 〉〈Q〉(u′ z′) p′ where Y <: V ,Q <: q . . .

m[P/p,X/T] ∈ cn〈T 〉〈p〉

IsoOrImm∆(Γ)
def
= ∀(x : p T) ∈ Γ. ∆ ` p ≺ immutable

B∆ : Permission→ Permission→ Permission
immutableB∆ = immutable

B∆ immutable = immutable

readableB∆ writable = readable

readableB∆ readable = readable

writableB∆ readable = readable

writableB∆ writable = writable

readableB∆ Q = readable

P B∆ readable = readable

writableB∆ Q = Q
P B∆ writable = P

P B∆ Q =

Q ∆ ` P ≺ Q
P ∆ ` Q ≺ P
P Q otherwise

Figure 14. Auxiliary judgements and metafunctions for the
polymorphic system.

this is too imprecise for uses such as container classes. There
is always a more precise answer to give, but it cannot be
known until all parameters are instantiated. To this end, we
also change the type and permission substitution to reduce
p q to p B∆ q if p and q are both concrete permissions
after substitution. Note that these deferred permissions are
effectively equivalent to readable in terms of what actions
generic code using them may perform. This deferred combi-
nation plays a pivotal role in supporting highly polymorphic
collection classes, as Section 6.3 describes.

We also support covariant subtyping on readable and
immutable references, as in IGJ [39].

∆ ` p c〈T i−1
, Ti, T

m−i〉〈p〉 ∆ ` p c〈T i−1
, T ′i , T

m−i〉〈p〉
p = readable ∨ p = immutable ∆ ` Ti ≺ T ′i

∆ ` p c〈T i−1
, Ti, T

m−i〉〈p〉 ≺ p c〈T i−1
, T ′i , T

m−i〉〈p〉

There is another rule for safe covariant permission subtyping
as well.

Soundness for Generics At a high level, the soundness
proof for the polymorphic system is similar to the monomor-
phic system, because we only need to embed fully-instantiated
programs (the top level program expression is type checked
with an empty type bound context). The definition for type
maps in the concrete machine states and views are redefined
to have a range of only fully-instantiated types, making type
environment denotations defined only over fully-instantiated
types.

W,X, Y, Z type variables
P,Q,R permission variables
T,U, V ::= cn〈T 〉〈p〉 | X

∣∣∣∣∣∣∣∣
TD ::= class cn〈X〉〈P 〉 [<: T2] whereX <: T , P <: p {field meth }
meth ::= t m〈X〉〈P 〉(t1 x1, ..., tn xn) p whereX <: T , P <: p { C; return x ; }
p, q ::= . . . | P | p p
∆ ::= ε | ∆, X <: T | ∆, P <: p

Figure 13. Grammar extensions for the polymorphic system.

Several auxiliary lemmas are required such as that sub-
stituting any valid permission or type instantiations into a
generic derivation yields a consistent derivation. Addition-
ally, the denotation of writable and isolated references
must use a strengthened subtyping bound on their referents,
to ensure they are viewed at a type that does not change
any field types (thus preventing the classic reference sub-
typing problem while allowing covariant subtyping of read-
only references). More details are given in our technical re-
port [20].

6. Evaluation
A source-level variant of this system, as an extension to
C#, is in use by a large project at Microsoft, as their pri-
mary programming language. The group has written sev-
eral million lines of code, including: core libraries (includ-
ing collections with polymorphism over element permis-
sions and data-parallel operations when safe), a webserver,
a high level optimizing compiler, and an MPEG decoder.
These and other applications written in the source language
are performance-competitive with established implementa-
tions on standard benchmarks; we mention this not because
our language design is focused on performance, but merely
to point out that heavy use of reference immutability, includ-
ing removing mutable static/global state, has not come at the
cost of performance in the experience of the Microsoft team.
In fact, the prototype compiler exploits reference immutabil-
ity information for a number of otherwise-unavailable com-
piler optimizations.

6.1 Differences from Formal System
The implementation differs from the formal system de-
scribed earlier in a number of ways, mostly small. The most
important difference is that the implementation supports
proper task parallelism, with a first-class (unstructured) join.
Task parallelism is supported via library calls that accept
isolated delegates (closures, which must therefore capture
only isolated or immutable state, in correspondence with T-
ASYNC) and return isolated promises, thus interacting
nicely with recovery and framing, since the asynchronous
task’s mutable memory is disjoint from the main compu-
tation’s. async blocks are not currently checked according
to T-ASYNC, mostly because we restrict async block task
execution to single-threaded cooperative behavior, multi-

plexing async block tasks on a single CLR thread2, which
already reduces concurrency errors from its use, so the team
has not yet decided to undertake the maintenance task of
turning on such checking. This permits some unchecked
concurrency, but single-threaded (avoiding at least memory
model issues) and with only explicit points of interference
(an await expression basically acts as a yield statement; es-
sentially cooperative concurrency). The team plans to even-
tually enable checking of async blocks as well. T-PAR is not
used for asynchronous tasks because it is unsound: recovery
(T-RECOVISO and T-RECOVIMM) is not valid if a shared
readable reference to mutable data can live arbitrarily long
after the “recovery block” in an asynchronous task. Thus
T-PAR is used only for applicable static constructs such as
parallel for loops.

There are also a few source-level conveniences added as
compared to the system here. The most notable is immutable
classes. Immutable classes are simply classes whose con-
structors are required to have a final type environment with
this : immutable rather than isolated. This allows the
constructor to internally treat the self pointer as writable
or isolated, before the type system conceptually uses T-
RECOVIMM. Thus, writable and readable constructor
arguments are permitted, they simply cannot be stored di-
rectly into the object. The disadvantage of this is that it is
not possible, without unsafe casts, to create a cycle of ob-
jects of immutable classes (cycles of immutable objects in
general remain possible as in Section 2.3).

The source variation also includes an unstrict block,
where permission checking is disabled. The eventual goal
is for this to be used only in trusted code (whose .NET as-
semblies are marked as such), for optimizations like lazy ini-
tialization of immutable data when an accessor is called; the
core libraries offer a set of standard abstractions to encap-
sulate these unsafe actions (Section 6.6). Finally, the source
language uses only a single type parameter list, where each
argument may be instantiated with a single permission or
full permission-qualified type.

C# also permits compound expressions, and expres-
sions with side-effects, which our core language disallows.
consume is an expression in the source language, which
performs a destructive read on its l-value argument and re-
turns the result. This makes using isolated method arguments

2 In C#’s implementation, async blocks may run on other threads [3], but
the team decided prior to adding reference immutability that such behavior
was too error prone.

more convenient than in our core language, which allows
statement consumption of fields, but treats isolated variables
as affine resources when passed to methods.

A common focus for safe data-parallelism systems is han-
dling of arrays. The implementation currently does not sup-
port arrays directly, but via trusted library abstractions for
safe data parallelism. We are currently designing a notion of
a sub-array, using a combination of isolation and immutabil-
ity to allow safe array partitioning for in-place updates, as
well as functional data-parallelism. This part of the design is
still evolving.

6.2 Differences from C#
Beyond adding the obvious immutability-related extensions
and restricting async block task execution to a single-
threaded model (augmented with a true task parallelism li-
brary) as already discussed, the only additional difference
from C# is that all static (global) state must be immutable.
This is necessary for safe parallelism and for the recovery
rules to avoid capturing shared mutable state. This restric-
tion does lead to some different coding patterns, and required
introducing several internally-unsafe but externally-safe li-
brary abstractions for things like global caches, which we
will discuss shortly.

6.3 Source Level Examples
Generic Collections Collection libraries are a standard
benchmark for any form of generics. The source variant of
our system includes a full collections library, including sup-
port for polymorphism over permissions of the collection
itself and elements of the collection. An illustrative exam-
ple is the following simplified collections interface (using a
lifting of our notation to a source language with interfaces,
retaining our separation of permission and class parameters):
public interface ICollection<Elem><PElem> {

public void add(PElem Elem e) writable;
public writable Enumerator<Elem><P,PElem> getEnumerator() P;

}
public interface IEnumerator<Elem><PColl,PElem> {

public bool hasNext() readable;
public PColl PElem Elem getNext() writable;

}

This collection interface is parameterized over a class type
for elements and a permission for the elements (which may
never be instantiated to isolated). The add() method is
natural, but the interesting case is getEnumerator(). This
method returns a writable enumerator, but the enumera-
tor manages two permissions: the permission with which
getEnumerator() is called (which governs the permission
the enumerator will hold on the collection) and the permis-
sion the collection has for the elements.

These separate permissions come into play in the type
of the enumerator’s getNext() method, which uses de-
ferred permission composition (p p, Section 5) to return
elements with as precise a permission as possible. Simply
specifying a single permission for the elements returned
requires either specifying a different enumerator variant

public class LinkedList<Elem><PElem>
implements ICollection<Elem><PElem> {
protected writable Node<Elem><PElem> head;
protected class Node<Elem><PElem> {

public PElem Elem item;
public writable Node<Elem><PElem> next;

}
protected class LLEnum<E><PColl,PE>
implements IEnumerator<E><PColl,PE> {
private PColl Node<Elem><PE> next;
public LLEnum(PColl LinkedList<E><PE> coll) {

next = coll.head;
}
public bool hasNext() readable { return next == null; }
public PColl PElem E getNext() writable {

if (next != null) {
PColl PElem E nextElem = next.item;
next = next.next;
return nextElem;

}
return null;

}
}
public LinkedList() { head = null; }
public void add(PElem Elem e) writable {

writable Node<Elem><PElem> n = new Node<Elem><PElem>();
n.item = e;
n.next = head;
head = n;

}
public writable Enumerator<Elem><P,PElem> getEnumerator() P {

return new LLEnum<Elem><P,PElem>(this);
}

}

Figure 15. A simplified collection with a polymorphic enu-
merator.

for every possible permission on the collection, or los-
ing precision. For example, given a writable collection
of immutable elements, it is reasonable to expect an it-
erator to return elements with an immutable permission.
This is straightforward with a getEnumerator() variant
specific to writable collections, but difficult using poly-
morphism for code reuse. Returning (using the enumera-
tor definition’s parameters) PElem elements is in general
not possible with a generic PColl permission on the col-
lection because we cannot predict at the method defini-
tion site the result of combining the two permissions when
the enumerator accesses the collection; it would be sound
for a writable collection of immutable objects, but not
for an immutable collection of writable objects since
immutableB∆ writable = immutable, not writable.
It also preserves precision, as any element from enumerating
an immutable collection of readable references should
ideally return immutable elements rather than the sound
but less precise readable.

Consider a linked list as in Figure 15. The heart of the it-
erator’s flexibility is in the type checking of the first assign-
ment in LLEnum.getNext(). There the code has a PColl

permissioned reference next to a linked list node that con-
tains a PElem permissioned reference field item to an ele-
ment. Thus the result type of next.item is PColl PElem

PE by T-FIELDREAD and B∆. When the linked list type is
instantiated, and getEnumerator() is called with a certain

permission, the enumerator type becomes fully instantiated
and the deferred combination is reduced to a concrete per-
mission. For example:
writable LinkedList<IntBox><writable> ll =

new LinkedList<IntBox><writable>();
writable IEnumerator<IntBox><writable,writable> e =

ll.getEnumerator(); // P instantiated as writable
writable IntBox b = e.getNext();

writable LinkedList<IntBox><readable> llr =
new LinkedList<IntBox><readable>();

writable IEnumerator<IntBox><writable,readable> e =
llr.getEnumerator(); // P instantiated as readable

writable IntBox b = e.getNext(); // Type Error!
// e.getNext() returns readable, since w r=r
readable IntBox b = e.getNext(); // OK

A slightly richer variant of this enumerator design underlies
the prototype’s foreach construct, and is used widely in the
Microsoft team’s code.

Data Parallelism Reference immutability gives our lan-
guage the ability to offer unified specializations of data
structures for safe concurrency patterns. Other systems,
such as the collections libraries for C# or Scala separate
concurrency-safe (immutable) collections from mutable col-
lections by separate (but related) trees in the class hierarchy.3

A fully polymorphic version of a map() method for a col-
lection can coexist with a parallelized version pmap() spe-
cialized for immutable or readable collections. Consider
the types and extension methods [34] (intuitively similar to
mixins on .NET/CLR, though the differences are non-trivial)
in Figure 16, adding parallel map to a LinkedList class for
a singly-linked list (assuming the list object itself acts as a
list node for this example). Each maps a function4 across the
list, but if the function requires only readable permission
to its arguments, pmap may be used to do so in parallel. Note
that the parallelized version can still be used with writable

collections through subtyping and framing as long as the
mapped operation is pure; no duplication or creation of an
additional collection just for concurrency is needed. With
the eventual addition of static method overloading by per-
missions (as in Javari [37]), these methods could share the
same name, and the compiler could automatically select the
parallelized version whenever possible.

6.4 Optimizations
Reference immutability enables some new optimizations in
the compiler and runtime system. For example, the concur-
rent GC can use weaker read barriers for immutable data.
The compiler can perform more code motion and caching,
and an MSIL-to-native pass can freeze immutable data into
the binary.

3 C# and Scala have practical reasons for this beyond simply being unable
to check safety of parallelism: they lack the temporary immutability of our
system due to the presence of unstructured parallelism.
4 Func1 is the intermediate-language encoding of a higher-order procedure.
C# has proper types for these, called delegate types [34], each compiled
to an abstract class with an invoke method with the appropriate arity and
types. We restrict our examples to the underlying object representation for
clarity.

public abstract class Func1<In,Out><Pin,Pout,Prun> {
public abstract Pout Out invoke(Pin In in) Prun;

}
public static class LinkedListExtensions {
// A parallel map
public static readable LinkedList<readable><X>
pmap<X>(
this readable LinkedList<readable><X>,
immutable Func1<X,X><readable,readable,readable> fun)

readable {
readable LinkedList<readable><X> rest = null;
isolated LinkedList<readable><X> head = null;

head = if (list.next != null)
new LinkedList<readable><X>; rest =

head.elem = fun(list.elem); list.next.map<X>(fun);

head.next = rest;
return head;

}
// A polymorphic map
public static writable LinkedList<PL PE><X>
map<X><PE>(
this PL LinkedList<PE><X> list,
immutable Func1<X,X><PL PE,PL PE,readable> fun) PL {
writable LinkedList<PL PE><X> result =

new LinkedList<PL PE><X>;
result.elem = fun(list.elem);
writable LinkedList<PL PE><X> newCurr = result;
PL LinkedList<PE><X> oldCurr = list;
while (oldCurr.next != null) {
newCurr.next = new LinkedList<PL PE><X>;
newCurr = newCurr.next;
oldCurr = oldCurr.next;
newCurr.elem = fun(oldCurr.elem);

}
return result;

}
}

Figure 16. Extension methods to add regular and parallel
map to a linked list.

A common concern with destructive reads is the addi-
tional memory writes a naı̈ve implementation (such as ours)
might incur. These have not been an issue for us: many null
writes are overwritten before flushing from the cache; the
compiler’s MSIL is later processed by one of two optimizing
compilers (.NET JIT or an ahead-of-time MSIL-to-native
compiler) that often optimize away shadowed null writes;
and in many cases the manual treatment of uniqueness would
still require storing null.

6.5 Evolving a Type System
This type system grew naturally from a series of efforts
at safe parallelism. The initial plans included no new lan-
guage features, only compiler plugins, and language exten-
sions were added over time for better support. The earli-
est version was simply copying Spec#’s [Pure] method
attribute [1], along with a set of carefully designed task-
and data-parallelism libraries. To handle rough edges with
this approach and ease checking, readable and immutable
were added, followed by library abstractions for isolated
and immutable. After some time using unstrict blocks to
implement those abstractions, we gradually saw a way to
integrate them into the type system. With all four permis-
sions, the team was much more eager to use reference im-

mutability. After seeing some benefit, users eagerly added
readable and immutable permissions.

Generics were the most difficult part of the design, but
many iterations on the design of generic collections pro-
duced the design shown here. The one aspect we still strug-
gle with is the occasional need for shallow permissions, such
as for a collection with immutable membership, but mutable
elements. This is the source of some unstrict blocks.

The entire design process was guided by user feedback
about what was difficult. Picking the right defaults had a
large impact on the users’ happiness and willingness to use
the language: writable is the default annotation, so any
single-threaded C# that does not access global state also
compiles with the prototype. This also made converting ex-
isting code much easier.

The system remains a work in progress. We initially
feared the loss of traditional threads could be a great weak-
ness, but the team placed slightly higher value on correct
concurrency than easy concurrency, leading to the design
point illustrated here. To recover some flexibility, we are
currently adding actor concurrency, using isolated and
immutable permissions for safe message passing [22, 24].

We continue to work on driving the number of unstrict
blocks as low as possible without over-complicating the type
system’s use or implementation. Part of this includes codify-
ing additional patterns that currently require unstrict use. We
understand how to implement some of these (such as per-
mission conversion for stateless objects like empty arrays)
safely within the type system, but the engineering trade-offs
have not yet been judged worth the effort to implement.

6.6 User Experience
Overall, the Microsoft team has been satisfied with the addi-
tional safety they gain from not only the general software en-
gineering advantages of reference immutability [37, 39, 40]
but particularly the safe parallelism.

Anecdotally, they claim that the further they push refer-
ence immutability through their code base, the more bugs
they find from spurious mutations. The main classes of bugs
found are cases where a developer provided an object in-
tended for read-only access, but a callee incorrectly mu-
tated it; accidental mutations of structures that should be
immutable; and data races where data should have been im-
mutable or thread local (i.e. isolated, and one thread kept
and used a stale reference).

Annotation burden has been low. There is roughly 1
annotation (permission or consume) per 63 lines of code.
These are roughly 55% readable, 16.8% consume, 16.5%
immutable, 4.7% writable, 4.1% isolated, and 2.8%
generic permissions. This is partly due to the writable

default, as well as C#’s local type inference (e.g. var x

= ...;). Thus most annotations appear in method signa-
tures. Note that because users added additional qualifiers for
stricter behavior checking, this is not the minimal annotation
burden to type check, but reflects heavy use of the system.

The type system does make some common tasks diffi-
cult. We were initially concerned that immutable-only global
state would be too restrictive, but has been mitigated by fea-
tures of the platform the Microsoft team develops on top of.
The platform includes pervasive support for capability-based
resource access for resources such as files. Global caches
are treated as capabilities, which must be passed explicity
through the source (essentially writable references). This re-
quires some careful design, but has not been onerous. Mak-
ing the caches global per process adds some plumbing effort,
but allows better unified resource management.

Another point of initial concern was whether isolation
would be too restrictive. In practice it also adds some design
work, but our borrowing / recovery features avoid viral lin-
earity annotations, so it has not been troublesome. It has also
revealed subtle aliasing and concurrency bugs, and it enables
many affine reference design patterns, such as checking lin-
ear hand-off in pipeline designs.

The standard library also provides trusted internally-
unstrict abstractions for common idioms that would other-
wise require wider use of unstrict blocks. Examples include
lazy initialization and general memoization for otherwise
immutable data structures, caches, and diagnostic logging.
There are relatively few unstrict blocks, of varying sizes
(a count does not give an accurate estimate of unchecked
code). Most of these are in safe (trusted) standard library
abstractions and interactions with the runtime system (GC,
allocator, etc., which are already not memory-safe). Over the
course of development, unstrict blocks have also been useful
for the Microsoft team to make forward progress even while
relying on effectively nightly builds of the compiler. They
have been used to temporarily work around unimplemented
features or compiler bugs, with such blocks being marked,
and removed once the compiler is updated.

The Microsoft team was surprisingly receptive to using
explicit destructive reads, as opposed to richer flow-sensitive
analyses [8, 28] (which also have non-trivial interaction with
exceptions). They value the simplicity and predictability of
destructive reads, and like that it makes the transfer of unique
references explicit and easy to find. In general, the team pre-
ferred explicit source representation for type system interac-
tions (e.g. consume, permission conversion).

The team has also naturally developed their own de-
sign patterns for working in this environment. One of the
most popular is informally called the “builder pattern” (as in
building a collection) to create frozen collections:

isolated List<Foo> list = new List<Foo>();

foreach (var cur in someOtherCollection) {

isolated Foo f = new Foo();

f.Name = cur.Name;

// etc ...

list.Add(consume f);

}

immutable List<Foo> immList = consume list;

This pattern can be further abstracted for elements with a
deep clone method returning an isolated reference.

Nearly all (non-async) concurrency in the system is
checked. The unchecked concurrency is mostly due to de-
velopment priorities (e.g. feature development has been pri-
oritized over converting the remaining code); removing all
unchecked concurrency from the system remains an explicit
goal for the team. Nonetheless, the safe concurrency fea-
tures described here have handled most of the team’s needs.
Natural partitioning of tasks, such as in the H.264 and JPEG
decoders (both verified for safe concurrency) is “surprisingly
common,” and well-supported by these abstractions. Some-
times breaking an algorithm into Map-Reduce-style phases
helps fit problems into these abstractions. The main difficul-
ties using the model come in two forms. The first form is
where partitioning is dynamic rather than structural. This is
difficult to express efficiently; we are working on a frame-
work to compute a partitioning blueprint dynamically. Sec-
ond, sometimes communication among tasks is not required
for correctness, but offers substantial performance benefits:
for example, in a parallelized search algorithm, broadcast-
ing the best-known result thus far can help all threads prune
the search space. Currently unstrict code is used for a few
instances of this, which motivates current work to add actors
to the language [22, 24].

7. Related Work
Reference immutability [37, 39, 40] is a family of work char-
acterized by the ability to make an object graph effectively
immutable to a region of code by passing read-only refer-
ences to objects that may be mutated later, where the read-
only effect of a reference applies transitively to all references
obtained through a read-only reference. Common extensions
include support for class immutability (classes where all in-
stances are permanently immutable after allocation) and ob-
ject immutability (making an individual instance of a class
permanently immutable). Surprisingly, despite safe paral-
lelism being cited as a natural application of reference im-
mutability, we are the first to formalize such a use.

Immutability Generic Java (IGJ) [39] is the most simi-
lar reference immutability work to ours, though it does not
address concurrency. IGJ uses Java generics support to em-
bed reference immutability into Java syntax (it still requires
a custom compiler to handle permission subtyping). Thus
reference permissions are specified by special classes as the
first type parameter of a generic type. IGJ’s support of ob-
ject immutability is also based on the permission passed to
a constructor, rather than conversion, so object immutabil-
ity is enforced at allocation, and may not be deferred as our
T-RECOVIMM rule allows. This means that creating a cy-
cle of immutable objects requires a self-passing constructor
idiom, where a constructor for cyclic immutable data struc-
tures must pass its this pointer into another constructor call
as Immutable. Haack and Poll relax this restriction by lexi-

cally scoping the modification lifetime of an immutable in-
stance [21].

Ownership [6, 7, 11, 13] and Universe [14] types describe
a notion of some objects “owning” others as a method of
structuring heap references and mutation. The “owner-as-
modifier” interpretation of ownership resembles reference
immutability: any modification to an object o must be done
through a reference to o’s owner. These systems still per-
mit references across ownership domain, but such refer-
ences (any references in Universe types) are deeply read-
only. Universe types specify a “viewpoint adaptation” re-
lation used for adapting type declarations to their use in a
given context, which directly inspired our permission adap-
tation relation. Leino, Müller, and Wallenburg [25] boost
the owner-as-modifier restriction to object immutability by
adding a freeze operation that transfers ownership of an ob-
ject to a hidden owner unavailable to the program source.
Since the owner cannot be mentioned, no modifications may
be made to frozen objects. In general, ownership transfer, (as
in Leino et al.’s system or UTT [27]) relies on uniqueness
and treats ownership domains as regions to merge.

The most similar treatment of polymorphism over muta-
bility-related qualifiers to our work is Generic Universe
Types (GUT). GUT provides polymorphism over permis-
sion-qualified types as in our prototype source language,
rather than separating qualifiers and class types as our core
language does. GUT’s viewpoint adaptation (roughly equiv-
alent to our permission combining relation B∆) deals im-
mediately with concrete qualifier combinations, and pre-
serves some precision when combining a concrete own-
ership modifier with a generic one. But when combining
two generic ownership modifiers, the result is always any,
roughly equivalent to readable in our system. In prac-
tice, this is sufficient precision for GUT, because passing
a generic type across ownership domains typically converts
to any anyways. Our use cases require additional precision,
which we retain by using deferred permission combination
(p p) to postpone the combination until all type parame-
ters are instantiated. Without this, the generic enumerator in
Section 6.3 could only return readable elements, even for
a writable collection of immutable elements. IGJ [39]
does not discuss this type of permission combining, but ap-
pears to have a similar loss of precision: i.e. accessing a field
with generic permission through a reference with generic
permission always yields a readable reference. OIGJ [40]
can express generic iterators, but mostly because reference
immutability in OIGJ is not transitive: a read-only iterator
over a mutable list is permitted to mutate the list, and an it-
erator over an immutable list of mutable elements can return
mutable references to those elements.

Ownership type systems have been used to achieve data
race freedom [6, 7, 13], essentially by using the owner-
ship hierarchy to associate data with locks and beyond that
enforcing data race freedom in the standard way [17–19].

Clarke et al. [12] use ownership to preserve thread locality,
but allow immutable instances and “safe” references (which
permit access only to immutable, e.g. Java-style final, por-
tions of the referent) to be shared freely across threads, and
add transfer of externally unique references.

Östlund et al. [30] present an ownership type and effect
system for a language Joe3 with the explicit aim of sup-
porting reference immutability idioms by embedding into
an ownership type system. Owner polymorphic methods de-
clare the effects they may have on each ownership domain,
treating ownership domains as regions [35, 36]. Joe3 uses
a similar technique to ours for delayed initialization of im-
mutable instances, as it has (externally) unique references,
and writing a unique reference to an immutable variable
or field converts the externally unique cluster into a cluster
of immutable objects. While Joe3 has blocks for borrow-
ing unique references, our T-RECOVIMM rule is more gen-
eral, combining borrowing and conversion. Their borrowing
mechanism also creates local owners to preserve encapsula-
tion, requiring explicit ownership transfer to merge aggre-
gates. Our type system also permits invoking some meth-
ods directly on unique references (as opposed to the re-
quired source-level borrowing in Joe3) because our frame
rule makes it easy to prove the invocation preserves unique-
ness with the additional argument restrictions (Figure 5).

Our T-RECOVISO rule is in some ways a simplification of
existing techniques for borrowing unique references, given
the presence of reference immutability qualifiers. The clos-
est work on borrowing to ours in terms of simplicity and
expressiveness is Haller and Odersky’s work [23] using ca-
pabilities that guard access to regions containing externally-
unique clusters. Regions of code that return an input capabil-
ity have only borrowed from a region, and have not violated
its external uniqueness. Local variable types ρ B τ are ref-
erences to an object of type τ in region ρ. When a reference
to some object in an externally unique aggregate is written
to a heap location, that aggregate’s capability is consumed
in a flow-sensitive fashion, and all local variables guarded
by that capability become inaccessible. Our recovery rule
requires no invalidation, though its use may require environ-
ment weakening. We believe the expressiveness of the two
approaches to be equal for code without method calls. For
method calls, Haller and Odersky track borrowing of indi-
vidual arguments by what permissions are returned. Our sys-
tem would require returning multiple isolated references
through the heap, though our recovery rules would allow in-
ferring some method returns as isolated in the proper con-
texts, without cooperation of the method called. We also add
some flexibility by allowing arbitrary paths to immutable
state reachable from an externally-unique aggregate.

Another interesting variant of borrowing is adoption [10,
16], where one piece of state is logically embedded into an-
other piece, which provides a way to manage unique refer-
ences without destructive reads.

Boyland proposed fractional permissions [9] to reason
statically about interference among threads in a language
with fork-join concurrency. We use a twist on fractional per-
missions in the denotation of our types, including to denote
uniqueness, though the fractions do not appear in the source
program or type system. The Plaid language uses fractional
permissions to manage aliasing and updates to objects when
checking typestate [2]. Recent work by Naden et al. to sim-
plify Plaid [28], like our system, does not require any frac-
tions or explicit permission terms to appear in source code,
though unlike us an implementation of their type system
must reason about fractional permissions (our fractional per-
missions appear only in our meta-proofs). Like us they use
type qualifiers to specify access permissions to each object,
though their permissions do not apply transitively (a distinc-
tion driven largely by our differing motivations). Naden’s
language supports externally-unique and immutable refer-
ences, and more fine-grained control than our system over
how permissions for each argument to a method are changed
(e.g. preserving uniqueness as an indication of borrowing),
though his language does not address concurrency.

Deterministic Parallel Java (DPJ) [4] uses effect typing
and nested regions [35, 36] to enable data parallelism and
deterministic execution of parallel programs. An expression
may have a read or write effect on each of some number
of regions, and expressions with non-conflicting effects (one
thread with write effect and none with read effects, or multi-
ple threads with read effects and no write effects, on each
region) may safely be parallelized. This ensures not only
the absence of data races, but determinism as well (later re-
visions add controlled nondeterminism [5]). Our system is
similar in spirit, but requires no mention of regions in the
source, only mention of the permissions required for each
object a method accesses, not where they reside. This means,
for example, that region polymorphism is implicit in our sys-
tem; methods need not bind to a specific number of regions,
while DPJ requires methods and classes to declare fixed
numbers of regions over which they operate (it is possible to
instantiate multiple region arguments with the same region).
The upside to the explicit treatment of regions in DPJ is that
non-interfering writes may be parallelized without requiring
any sort of reference uniqueness (the type system must still
be able to prove two regions are distinct). DPJ also treats
data parallelism over arrays, whereas we do not.

Westbrook et al. [38] describe Habanero Java with Per-
missions (HJp), a language with parallelism structure be-
tween our formal and source languages: async(e) begins an
asynchronous task and returns unit; finish(e) waits for all
tasks spawned within e, rather than allowing joins with indi-
vidual tasks. They use qualifiers to distinguish thread-local
read, thread-local write, and thread-shared read access to ob-
jects (the latter is mutually exclusive with the first two). They
must distinguish between thread local and shared read-only
access because they cannot guarantee the inaccessibility of

writable references to objects for the duration of an async;
doing so would require a flow-sensitive set of variables in-
accessible until the enclosing finish() because the end of
an async is not statically scoped, and async blocks may
capture any shareable state, not only unique or immutable
state. Their treatment of storing (totally) unique references
in unique fields and embedding the referent’s permissions
is more flexible for concurrency than our isolated fields.
Their embedding allows natural read-only access to unique
field referents if the containing object is shared read-only,
while isolated fields of shared readable objects are in-
accessible until recovery or conversion. Reads from non-
unique fields in HJp have no static permissions; dereferenc-
ing such fields requires dynamically acquiring permissions.
We treat permission polymorphism, while they do not.

8. Conclusions
We have used reference immutability to ensure safe (inter-
ference-free) parallelism, in part by combining reference im-
mutability with external uniqueness. Applying our approach
to an intermediate-level language led us to derive recovery
rules for recovering isolation or immutability in certain con-
texts, which offers a natural approach to borrowing for lan-
guages with reference immutability. Our type system models
a reference immutability system in active use in industry, and
we have described their experiences with it.

Acknowledgments
Thanks to Dan Grossman, Brian Burg, and the anonymous
reviewers for helpful comments, and to Michael Ernst for
helpful conversations about related work.

The first author’s design work occurred during a Mi-
crosoft internship; proof work was supported by NSF grants
CCF-1016701 and CNS-0855252.

References
[1] M. Barnett, M. Fähndrich, K. R. M. Leino, P. Müller,

W. Schulte, and H. Venter. Specification and Verification: The
Spec# Experience. Commun. ACM, 54(6):81–91, June 2011.

[2] K. Bierhoff and J. Aldrich. Modular Typestate Checking of
Aliased Objects. In OOPSLA, 2007.

[3] G. Bierman, C. Russo, G. Mainland, E. Meijer, and M. Torg-
ersen. Pause n Play: Formalizing Asynchronous C]. In
ECOOP, 2012.

[4] R. L. Bocchino, Jr., V. S. Adve, D. Dig, S. V. Adve,
S. Heumann, R. Komuravelli, J. Overbey, P. Simmons,
H. Sung, and M. Vakilian. A Type and Effect System for De-
terministic Parallel Java. In OOPSLA, 2009.

[5] R. L. Bocchino, Jr., S. Heumann, N. Honarmand, S. V. Adve,
V. S. Adve, A. Welc, and T. Shpeisman. Safe Nondeterminism
in a Deterministic-by-default Parallel Language. In POPL,
2011.

[6] C. Boyapati and M. Rinard. A Parameterized Type System for
Race-Free Java Programs. In OOPSLA, 2001.

[7] C. Boyapati, R. Lee, and M. Rinard. Ownership Types for
Safe Programming: Preventing Data Races and Deadlocks. In
OOPSLA, 2002.

[8] J. Boyland. Alias Burying: Unique Variables without Destruc-
tive Reads. Software Practice & Experience, 31(6), 2001.

[9] J. Boyland. Checking Interference with Fractional Permis-
sions. In SAS, 2003.

[10] J. T. Boyland and W. Retert. Connecting Effects and Unique-
ness with Adoption. In POPL, 2005.

[11] D. Clarke, S. Drossopoulou, and J. Noble. Aliasing, Confine-
ment, and Ownership in Object-Oriented Programming. In
ECOOP 2003 Workshop Reader, 2004.

[12] D. Clarke, T. Wrigstad, J. Östlund, and E. Johnsen. Minimal
Ownership for Active Objects. In APLAS, 2008.

[13] D. Cunningham, S. Drossopoulou, and S. Eisenbach. Universe
Types for Race Safety. In VAMP, 2007.

[14] W. Dietl, S. Drossopoulou, and P. Müller. Generic Universe
Types. In ECOOP, 2007.

[15] T. Dinsdale-Young, L. Birkedal, P. Gardner, M. Parkinson, and
H. Yang. Views: Compositional Reasoning for Concurrent
Programs. Technical report, 2012. URL https://sites.

google.com/site/viewsmodel/.

[16] M. Fahndrich and R. DeLine. Adoption and Focus: Practical
Linear Types for Imperative Programming. In PLDI, 2002.

[17] C. Flanagan and M. Abadi. Object Types against Races. In
CONCUR, 1999.

[18] C. Flanagan and M. Abadi. Types for Safe Locking. In ESOP,
1999.

[19] C. Flanagan and S. N. Freund. Type-Based Race Detection
for Java. In PLDI, 2000.

[20] C. S. Gordon, M. J. Parkinson, J. Parsons, A. Bromfield, and
J. Duffy. Uniqueness and Reference Immutability for Safe
Parallelism (Extended Version). Technical Report MSR-TR-
2012-79, 2012.

[21] C. Haack and E. Poll. Type-Based Object Immutability with
Flexible Initialization. In ECOOP, 2009.

[22] P. Haller. Isolated Actors for Race-Free Concurrent Program-
ming. PhD thesis, EPFL, Lausanne, Switzerland, 2010.

[23] P. Haller and M. Odersky. Capabilities for Uniqueness and
Borrowing. In ECOOP, 2010.

[24] C. Hewitt, P. Bishop, I. Greif, B. Smith, T. Matson, and
R. Steiger. Actor Induction and Meta-Evaluation. In POPL,
1973.

[25] K. Leino, P. Müller, and A. Wallenburg. Flexible Immutability
with Frozen Objects. In VSTTE, 2008.

[26] K. Mazurak, J. Zhao, and S. Zdancewic. Lightweight Linear
Types in System F◦. In TLDI, 2010.

[27] P. Müller and A. Rudich. Ownership Transfer in Universe
Types. In OOPSLA, 2007.

[28] K. Naden, R. Bocchino, J. Aldrich, and K. Bierhoff. A Type
System for Borrowing Permissions. In POPL, 2012.

[29] P. O’Hearn, J. Reynolds, and H. Yang. Local Reasoning about
Programs that Alter Data Structures. In Computer Science
Logic, 2001.

https://sites.google.com/site/viewsmodel/
https://sites.google.com/site/viewsmodel/

[30] J. Östlund, T. Wrigstad, D. Clarke, and B. Åkerblom. Owner-
ship, Uniqueness, and Immutability. In Objects, Components,
Models and Patterns, 2008.

[31] M. Parkinson, R. Bornat, and C. Calcagno. Variables as
Resource in Hoare Logics. In LICS, 2006.

[32] U. S. Reddy and J. C. Reynolds. Syntactic Control of Inter-
ference for Separation Logic. In POPL, 2012.

[33] J. Reynolds. Separation Logic: A Logic for Shared Mutable
Data Structures. In LICS, 2002.

[34] J. Richter. CLR Via C], Second Edition. Microsoft Press,
2006. ISBN 0735621632.

[35] J.-P. Talpin and P. Jouvelot. Polymorphic Type, Region, and
Effect Inference. JFP, 2(2), 1992.

[36] M. Tofte and J.-P. Talpin. Implementation of the Typed Call-
by-Value λ-calculus Using a Stack of Regions. In POPL,
1994.

[37] M. S. Tschantz and M. D. Ernst. Javari: Adding Reference
Immutability to Java. In OOPSLA, 2005.

[38] E. Westbrook, J. Zhao, Z. Budimli, and V. Sarkar. Practical
Permissions for Race-Free Parallelism. In ECOOP, 2012.

[39] Y. Zibin, A. Potanin, M. Ali, S. Artzi, A. Kiezun, and M. D.
Ernst. Object and Reference Immutability Using Java Gener-
ics. In ESEC-FSE, 2007.

[40] Y. Zibin, A. Potanin, P. Li, M. Ali, and M. D. Ernst. Owner-
ship and Immutability in Generic Java. In OOPSLA, 2010.

	Introduction
	Reference Immutability, Uniqueness, and Parallelism
	Conversion from Isolated
	Recovering Isolation
	Recovering Immutability, and Cycles of Immutable Objects
	Safe Symmetric Parallelism
	Safe Asymmetric Parallelism

	Types for Reference Immutability and Parallelism
	Recovery Rules
	Safe Parallelism
	Methods
	Examples
	Assigning an Isolated Variable
	Temporarily Violating Isolation

	Type Soundness
	Views Framework
	Soundness Proof

	Polymorphism
	Evaluation
	Differences from Formal System
	Differences from C#
	Source Level Examples
	Optimizations
	Evolving a Type System
	User Experience

	Related Work
	Conclusions

