Geometric Preliminaries

- **Affine Geometry**
 - Scalars + Points + Vectors and their ops
- **Euclidian Geometry**
 - Affine Geometry lacks angles, distance
 - New op: Inner/Dot product, which gives
 - Length, distance, normalization
 - Angle, Orthogonality, Orthogonal projection
- **Projective Geometry**

Mathematical Preliminaries

- Vector: an n-tuple of real numbers
- Vector Operations
 - Vector addition: \(v + w = w\)
 - Commutative, associative, identity element (0)
 - Scalar multiplication: \(cv\)
- Note: Vectors and Points are different
 - Can not add points
 - Can find the vector between two points

Linear Combinations & Dot Products

- A linear combination of the vectors \(v_1, v_2, \ldots, v_n\)
 is any vector of the form
 \[\alpha_1 v_1 + \alpha_2 v_2 + \cdots + \alpha_n v_n\]
 where \(\alpha_i\) is a real number (i.e. a scalar)
- Dot Product:
 \[u \cdot v = \sum_{k=1}^{n} u_k v_k\]
 a real value \(\alpha_1 v_1 + \alpha_2 v_2 + \cdots + \alpha_n v_n\) written as \(u \cdot v\)
Fun with Dot Products

- **Euclidian Distance** from \((x, y)\) to \((0, 0)\):
 \[\sqrt{x^2 + y^2} \]
 in general:
 \[\sqrt{x_1^2 + x_2^2 + \ldots + x_n^2} \]
 which is just:
 \[\sqrt{\sum x_i^2} \]
- This is also the length of vector \(v\):
 \[||v|| \]
- Normalization of a vector: \[\hat{v} = \frac{v}{||v||} \]
- **Orthogonal vectors:** \[\hat{u} \cdot \hat{v} = 0 \]

Projections & Angles

- **Angle** between vectors, \(\theta\):
 \[\hat{u} \cdot \hat{v} = ||u|| \cdot ||v|| \cdot \cos(\theta) \]
 \[\theta = \text{ang}(\hat{u}, \hat{v}) = \cos^{-1} \left(\frac{\hat{u} \cdot \hat{v}}{||u|| \cdot ||v||} \right) = \cos^{-1}(\hat{u} \cdot \hat{v}) \]
- **Projection** of vectors:
 \[\hat{u}_1 = \left(\hat{u} \cdot \hat{v} \right) \frac{\hat{v}}{||v||^2} \]
 \[\hat{u}_2 = \hat{u} - \hat{u}_1 \]

Matrices and Matrix Operators

- A \(n\)-dimensional vector:
 \[\begin{bmatrix} x_1 \\ \vdots \\ x_n \end{bmatrix} \]
- **Matrix Operations:**
 - Addition/Subtraction
 - Identity
 - Multiplication
 - Scalar
 - **Matrix Multiplication**
- **Implementation issue:**
 Where does the index start? (0 or 1, it's up to you...)

Matrices and Matrix Operators

- **Matrix Multiplication**:
 \[[C] = [A][B] \]
 - Sum over rows & columns
 - Recall: matrix multiplication is not commutative
- **Identity Matrix**:
 \[\begin{bmatrix} 1_{n \times n} \end{bmatrix} \]
 \(1s\) on diagonal
 \(0s\) everywhere else

Matrix Determinants

- A single real number
- Computed recursively
 \[\det(A) = \sum_{i=1}^{n} A_{i,j} \cdot (-1)^{i+j} \cdot M_{i,j} \]
- Example:
 \[\begin{bmatrix} a & b \\ c & d \end{bmatrix} \rightarrow ad - bc \]
- Uses:
 - Find vector ortho to two other vectors
 - Determine the plane of a polygon

Cross Product

- Given two non-parallel vectors, \(A\) and \(B\):
 \(A \times B\) calculates third vector \(C\) that is orthogonal to \(A\) and \(B\)
 \[A \times B = (a_yb_z - a_zb_y, a_zb_x - a_xb_z, a_xb_y - a_yb_x) \]
 \[A \times B = \begin{bmatrix} a_x & a_y & a_z \\ b_x & b_y & b_z \end{bmatrix} \]
Matrix Transpose & Inverse

- **Matrix Transpose**: Swap rows and cols:
 \[A = \begin{bmatrix} 2 \\ 8 \end{bmatrix} \quad A^T = \begin{bmatrix} 2 & 8 \end{bmatrix} \]
- Facts about the transpose:
 \[(A + B)^T = A^T + B^T \]
 \[(cA)^T = cA^T \]
- **Matrix Inverse**: Given A, find B such that
 \[AB = BA = I \]
 \[B = A^{-1} \]
 (only defined for square matrices)

Scan-Conversion Algorithms

- Scan-Conversion: Computing pixel coordinates for ideal line on 2D raster grid
- Pixels best visualized as circles/dots
 - Why? Monitor hardware

Line Drawing

- **Drawing a Line**
 - \(y = mx + B \)
 - \(m = \Delta y / \Delta x \)
 - Start at leftmost \(x \) and increment by 1
 \[\Delta x = 1 \]
 - \(y_i = \text{Round}(mx_i + B) \)
 - This is expensive and inefficient
 - Since \(\Delta x = 1, \ y_{i+1} = y_i + \Delta y = y_i + m \)
 - No more multiplication!
 - This leads to an incremental algorithm

Digital Differential Analyzer (DDA)

- If \(|\text{slope}|\) is less than 1
 - \(\Delta x = 1 \)
 - \(\Delta y = \frac{\Delta y}{\Delta x} \)
 - Check for vertical line
 - \(m = \infty \)
 - Compute corresponding \(\Delta y \ (\Delta x) = m (1/m) \)
 - \(x_{i+1} = x_i + \Delta x \)
 - \(y_{i+1} = y_i + \Delta y \)
 - Round \((x,y)\) for pixel location
 - Issue: Would like to avoid floating point operations

Generalizing DDA

- If \(|\text{slope}|\) is less than or equal to 1
 - Ending point should be right of starting point
- If \(|\text{slope}|\) is greater than 1
 - Ending point should be above starting point
- Vertical line is a special case
 \[\Delta x = 0 \]
Bresenham’s Algorithm

- 1965 @ IBM
- Basic Idea:
 - Only integer arithmetic
 - Incremental
- Consider the implicit equation for a line:
 \[f(x, y) = ax + by + c = 0 \]

The Algorithm

```c
void bresenham(int Point1, int Point2) {
    int dx, dy, D, x = point1.x, y = point1.y;
    dy = abs(dy); // line width and height
    D = 2 * dy - dx; // initial decision value
    for (x = point1.x; x < point2.x; x++) {
        writePixel(x, y);
        if (D <= 0) D += 2 * dy;
        else D += 2 * dy - 2 * dx;
        y++;
    }
}
```

Assumptions: \(q_x < r_x \)
0 ≤ slope ≤ 1

Bresenham’s Algorithm

Given:
* implicit line equation: \(f(x, y) = ax + by + c = 0 \)

Let:
\[d_x = r_x - q_x, d_y = r_y - q_y \]
where \(r \) and \(q \) are points on the line and \(d_x, d_y \) are positive
\[a = d_y, b = -d_x, c = -(q_x r_y - r_x q_y) \]

Then:
Observe that all of these are integers
and: \(f(x, y) < 0 \) for points above the line
\(f(x, y) > 0 \) for points below the line

Now......

Bresenham’s Algorithm

Assume:
- \(Q = \) exact y value at \(x = p_x + 1 \)
- \(y \) midway between \(E \) and \(NE \): \(M = p_y + 1/2 \)

Observe:
- If \(Q < M \), then pick \(E \)
- Else pick \(NE \)
- If \(Q = M \), it doesn’t matter

Bresenham’s Algorithm

Suppose we just finished \((p_x, p_y)\)
- (assume 0 ≤ slope ≤ 1)
other cases symmetric
- Which pixel next?
 - \(E \) or \(NE \)
 - East \((E = (p_x + 1, p_y))\)
 - NorthEast \((NE = (p_x + 1, p_y + 1))\)

Bresenham’s Algorithm

Create “modified” implicit function (2x)
\[f(x, y) = 2ax + 2by + 2c = 0 \]
Create a decision variable \(D \) to select, where \(D \) is the value of \(f \) at the midpoint:
\[D = f(p_x + 1, p_y) + f(p_x + 1/2, p_y) + 2(c) \]
Bresenham’s Algorithm

- If $D > 0$ then M is below the line $f(x,y)$
 - $N E$ is the closest pixel
- If $D \leq 0$ then M is above the line $f(x,y)$
 - E is the closest pixel

![Diagram of line and pixels](image)

- Note: because we multiplied by $2x$, D is now an integer—which is very good news
- How do we make this incremental?

Case I: When E is next

- What increment for computing a new D?
- Next midpoint is: $(p_x + 2, p_y + (1/2))$

 $D_{new} = f(p_x + 2, p_y + (1/2))$

 $= 2a(p_x + 2) + 2b\left(p_y + \frac{1}{2}\right) + 2c$

 $= 2ap_x + 2bp_y + (4a + b + 2c) + 2a$

 $= D + 2a = D + 2d_x$

 Hence, increment by: $2d_x$

Case II: When $N E$ is next

- What increment for computing a new D?
- Next midpoint is: $(p_x + 2, p_y + 1 + (1/2))$

 $D_{new} = f(p_x + 2, p_y + 1 + (1/2))$

 $= 2a(p_x + 2) + 2b\left(p_y + \frac{3}{2}\right) + 2c$

 $= 2ap_x + 2bp_y + (4a + 3b + 2c) + 2a$

 $= D + 2(a + b) = D + 2(d_y - d_x)$

 Hence, increment by: $2(d_y - d_x)$

How to get an initial value for D?

- Suppose we start at: (q_x, q_y)
- Initial midpoint is: $(q_x + 1, q_y + 1/2)$
- Then:

 $D_{init} = f(q_x + 1, q_y + 1/2)$

 $= 2a(q_x + 1) + 2b\left(q_y + \frac{1}{2}\right) + 2c$

 $= (2aq_x + 2bq_y + 2c) + (2a + b)$

 $= 2d_y - d_x$

The Algorithm

```c
void bresenham(intPoint q, intPoint r) {
    int dx, dy, d, x, y;
    dx = r.x - q.x; // line width and height
    dy = r.y - q.y;
    d = 2*dy - dx; // initial decision value
    y = q.y;
    // start at (q.x,q.y)
    for (x = q.x; x <= r.x; x++) { // write pixels(x, y);
        if (x < 0) d += 2*dy; // below midpoint - go to E
        else if (x > 0) d -= 2*dy; // above midpoint - go to NE
        if (d < 0) y++; // below midpoint - go to NE
        else y--;
    }
}
```

Assumptions: $q_x \geq r_x$

$0 \leq \text{slope} \leq 1$

Pre-computed: $2d_y 2(d_y - d_x)$
Generalize Algorithm

- If \(q_x > r_x \), swap points
- If slope > 1, always increment y, conditionally increment x
- If \(-1 \leq \text{slope} < 0\), always increment x, conditionally decrement y
- If slope < -1, always decrement y, conditionally increment x
- Rework D increments

Generalize Algorithm

- Reflect line into first case
- Calculate pixels
- Reflect pixels back into original orientation

Bresenham’s Algorithm: Example

Bresenham’s Algorithm: Example

Bresenham’s Algorithm: Example

Bresenham’s Algorithm: Example
Some issues with Bresenham’s Algorithms

- Pixel ‘density’ varies based on slope
 - straight lines look darker, more pixels per unit length
- Endpoint order
- Line from P1 to P2 should match P2 to P1
- Always choose E when hitting M, regardless of direction
XPM Format
• Encoded pixels
• C code
• ASCII Text file
• Viewable on Unix w/ `display`
• On Windows w/ `IrfanView`
• Translate w/ `convert`

XPM Basics
• X PixelMap (XPM)
• Native file format in X Windows
• Color cursor and icon bitmaps
• Files are actually C source code
• Read by compiler instead of viewer
• Successor of X BitMap (XBM) B-W format

XPM Supports Color
XPM: Defining Grayscale
• Each pixel specified by an ASCII char
• Key describes the context this color should be used within. You can always use "c" for "color".
• Colors can be specified:
 – color name
 – "#" followed by the RGB code in hexadecimal
• RGB – 24 bits (2 characters '0' – 'f') for each color.

XPM: Specifying Color

<table>
<thead>
<tr>
<th>Color Name</th>
<th>RGB</th>
<th>Color</th>
</tr>
</thead>
<tbody>
<tr>
<td>black</td>
<td># 00 00 00</td>
<td></td>
</tr>
<tr>
<td>white</td>
<td># ff ff ff</td>
<td></td>
</tr>
<tr>
<td>red</td>
<td># ff 00 00</td>
<td></td>
</tr>
<tr>
<td>green</td>
<td># 00 ff 00</td>
<td></td>
</tr>
<tr>
<td>blue</td>
<td># 00 00 ff</td>
<td></td>
</tr>
</tbody>
</table>

XPM Example
• Array of C strings
• The XPM format assumes the origin (0,0) is in the upper left-hand corner.
• First string is "width height ncolors cpp"
• Then you have "ncolors" strings associating characters with colors.
• And last you have "height" strings of "width" * "chars_per_pixel" characters
Programming assignment 1

• Input PostScript-like file
• Output B/W XPM
• Primary I/O formats for the course
• Create data structure to hold points and lines in memory (*the world model*)
• Implement 2D translation, rotation and scaling of the world model
• Implement line drawing and clipping
• Due October 5th
• Get started now!

Questions?

Go to Assignment 1