Outline

- Math refresher
- Line drawing
- Digital differential analyzer
- Bresenham’s algorithm
- PBM file format

Geometric Preliminaries

- **Affine Geometry**
 - Scalars + Points + Vectors and their ops
- **Euclidian Geometry**
 - Affine Geometry lacks angles, distance
 - New op: Inner/Dot product, which gives
 - Length, distance, normalization
 - Angle, Orthogonality, Orthogonal projection
- **Projective Geometry**

Mathematical Preliminaries

- Vector: an n-tuple of real numbers
- Vector Operations
 - Vector addition: \(u + v = w \)
 - Commutative, associative, identity element (0)
 - Scalar multiplication: \(c v \)
- Note: Vectors and Points are different
 - Can not add points
 - Can find the vector between two points

Linear Combinations & Dot Products

- A linear combination of the vectors
 \(v_1, v_2, \ldots, v_n \)
 is any vector of the form
 \(\alpha_1 v_1 + \alpha_2 v_2 + \ldots + \alpha_n v_n \)
 where \(\alpha_i \) is a real number (i.e., a scalar)
- Dot Product:
 \[u \cdot v = \sum_{k=1}^{n} u_k v_k \]
 a real value, \(u_1 v_1 + u_2 v_2 + \ldots + u_n v_n \), written as \(u \cdot v \)
Fun with Dot Products

- **Euclidian Distance** from \((x,y)\) to \((0,0)\):
 \[
 \sqrt{x^2 + y^2}
 \]
 in general:
 \[
 \sqrt{x_1^2 + x_2^2 + \ldots + x_n^2}
 \]
 which is just:
 \[
 \sqrt{\mathbf{v} \cdot \mathbf{v}}
 \]
 This is also the length of vector \(\mathbf{v}\):
 \[
 ||\mathbf{v}||
 \]
 or \(|\mathbf{v}|\)

- **Normalization** of a vector:
 \[
 \hat{\mathbf{v}} = \frac{\mathbf{v}}{||\mathbf{v}||}
 \]

- **Orthogonal vectors**:
 \[
 \hat{\mathbf{u}} \cdot \hat{\mathbf{v}} = 0
 \]

Projections & Angles

- **Angle between vectors**, \(\theta\):
 \[
 \theta = \cos^{-1}\left(\frac{\mathbf{u} \cdot \mathbf{v}}{||\mathbf{u}|| \cdot ||\mathbf{v}||}\right)
 \]

- **Projection of vectors**:
 \[
 \mathbf{u}_1 = \left(\frac{\mathbf{u} \cdot \mathbf{v}}{||\mathbf{v}||^2}\right)\mathbf{v}
 \]
 \[
 \mathbf{u}_2 = \mathbf{u} - \mathbf{u}_1
 \]

Matrices and Matrix Operators

- A \(n\)-dimensional vector:
 \[
 \begin{bmatrix}
 x_1 \\
 \vdots \\
 x_n
 \end{bmatrix}
 \]

- Matrix Operations:
 - Addition/Subtraction
 - Identity
 - Multiplication
 - Scalar
 - Matrix Multiplication

 Where does the index start? (0 or 1, it's up to you...)

- **Identity Matrix**: 1s on diagonal
 \[
 C_{ij} = \begin{cases}
 a_{ii} & \text{if } i = j \\
 0 & \text{otherwise}
 \end{cases}
 \]

- Recall: matrix multiplication is not commutative

Matrix Multiplication

- \([C] = [A][B]\)
- Sum over rows & columns
- \([C] = \sum_{i=1}^{n} a_{i,j} b_{j,k}\)

Cross Product

- Given two non-parallel vectors, \(A\) and \(B\)
- \(A \times B\) calculates third vector \(C\) that is orthogonal to \(A\) and \(B\)
- \(A \times B = (a_y b_z - a_z b_y, a_z b_x - a_x b_z, a_x b_y - a_y b_x)\)
- \[
 A \times B = \begin{bmatrix}
 a_x & a_y & a_z \\
 b_x & b_y & b_z
 \end{bmatrix}
 \]

Matrix Determinants

- A single real number
- Computed recursively
 \[
 \det(A) = \sum_{i=1}^{n} A_{i,j} (-1)^{i+j} M_{i,j}
 \]

- Example:
 \[
 \det\begin{bmatrix}
 a & c \\
 b & d
 \end{bmatrix} = ad - bc
 \]

- Uses:
 - Find vector ortho to two other vectors
 - Determine the plane of a polygon
Matrix Transpose & Inverse

- **Matrix Transpose**: Swap rows and cols:
 \[A = \begin{bmatrix} 2 & 8 \\ 8 & 2 \end{bmatrix} \quad A^T = \begin{bmatrix} 2 & 8 \\ 8 & 2 \end{bmatrix} \]

- **Facts about the transpose**:
 - \((A^T)^T = A\)
 - \((A + B)^T = A^T + B^T\)
 - \((cA)^T = c(A^T)\)
 - \((AB)^T = B^T A^T\)

- **Matrix Inverse**: Given \(A\), find \(B\) such that \(AB = BA = I\)
 \(B = A^{-1}\)
 (only defined for square matrices)

Line Drawing

Scan Conversion Algorithms

- **Scan Conversion**: Computing pixel coordinates for ideal line on 2D raster grid
- **Pixels best visualized as circles/dots**
 - Why? Monitor hardware

Drawing a Line

- \(y = mx + B\)
- \(m = \Delta y / \Delta x\)
- Start at leftmost \(x\) and increment by 1
 \(\Delta x = 1\)
- \(y_i = \text{Round}(mx_i + B)\)
- This is expensive and inefficient
- Since \(\Delta x = 1\), \(y_{i+1} = y_i + \Delta y = y_i + m\)
 - No more multiplication!
- This leads to an incremental algorithm

Digital Differential Analyzer (DDA)

- If \(|\text{slope}|\) is less than 1
 - \(\Delta x = 1\)
 - \(\Delta y = \frac{\Delta y}{\Delta x}\)
- Check for vertical line
 - \(m = \infty\)
- Compute corresponding \(\Delta y (\Delta x) = m (1/m)\)
- \(x_{i+1} = x_i + \Delta x\)
- \(y_{i+1} = y_i + \Delta y\)
- Round \((x,y)\) for pixel location
- Issue: Would like to avoid floating point operations

Generalizing DDA

- If \(|\text{slope}|\) is less than or equal to 1
 - Ending point should be right of starting point
- If \(|\text{slope}|\) is greater than 1
 - Ending point should be above starting point
- Keep \(x\) and \(y\) as floating point values
- Vertical line is a special case
 \(\Delta x = 0\)
Bresenham’s Algorithm

• 1965 @ IBM

• Basic Idea:
 – Only integer arithmetic
 – Incremental

• Consider the implicit equation for a line:
 \[f(x, y) = ax + by + c = 0 \]

The Algorithm

void bresenham(IntPoint p, IntPoint r) {
 int dx = r.x - p.x, dy = r.y - p.y;
 int D = 2*dy - dx; // initial decision value
 int x = p.x, y = p.y; // start at (x,y)
 for (int X = p.x; X <= r.x; X++) {
 if (D <= 0) D += 2*dy; // below midpoint – go to E
 else { D += 2*(dy - dx); y++; } // above midpoint – go to NE
 writePixel(x, y);
 }
}

Assumptions: \(q_x < r_x \)
\(0 \leq \text{slope} \leq 1 \)

Bresenham’s Algorithm

Given:
implicit line equation: \(f(x, y) = ax + by + c = 0 \)

Let: \(d_x = r_x - q_x, d_y = r_y - q_y \)
where \(r \) and \(q \) are points on the line and \(d_x, d_y \) are positive
\[a = d_y, \quad b = -d_x, \quad c = -(q_x r_y - r_x q_y) \]

Then:
Observe that all of these are integers
and: \(f(x, y) < 0 \) for points above the line
\(f(x, y) > 0 \) for points below the line

Now…..

Bresenham’s Algorithm

Assume:
• \(Q = \text{exact} y \text{ value at } x = p_x + 1 \)
• \(y \text{ midway between } E \text{ and } NE: M = p_x + 1/2 \)

Observe:
If \(Q < M \), then pick \(E \)
Else pick \(NE \)
If \(Q = M \), it doesn’t matter

Bresenham’s Algorithm

• Suppose we just finished \((p_x, p_y) \)
 – (assume \(0 \leq \text{slope} \leq 1 \))
 other cases symmetric

• Which pixel next?
 – \(E \) or \(NE \)

East (\(E = (p_x + 1, p_y) \))
NorthEast (\(NE = (p_x + 1, p_y + 1) \))

Bresenham’s Algorithm

• Create “modified” implicit function (2x)
 \[f(x, y) = 2ax + 2by + 2c = 0 \]

• Create a decision variable \(D \) to select, where \(D \) is the value of \(f \) at the midpoint:
 \[D = f(p_x + 1, p_y + (1/2)) = 2a(p_x + 1) + 2b \left(p_y + \frac{1}{2} \right) + 2c = 2ap_x + 2bp_y + (2a + b + 2c) \]
Bresenham’s Algorithm

- If $D > 0$ then M is below the line \(f(x, y) \);
 - NE is the closest pixel
- If $D \leq 0$ then M is above the line \(f(x, y) \);
 - E is the closest pixel

\[
\begin{align*}
D_{\text{new}} &= f(p_x + 2, p_y + 1/2) \\
&= 2a p_x + 2b q_y + (4a + b + 2c)
\end{align*}
\]

• Hence, increment by: $2d_y$

Case I: When E is next

- What increment for computing a new D?
- Next midpoint is: \(\langle p_x + 2, p_y + (1/2) \rangle \)

\[
\begin{align*}
D_{\text{new}} &= f(p_x + 2, p_y + 1/2) \\
&= 2a p_x + 2b q_y + (4a + b + 2c)
\end{align*}
\]

• Hence, increment by: $2d_y$

Case II: When NE is next

- What increment for computing a new D?
- Next midpoint is: \(\langle p_x + 2, p_y + 1 + (1/2) \rangle \)

\[
\begin{align*}
D_{\text{new}} &= f(p_x + 2, p_y + 1 + (1/2)) \\
&= 2a p_x + 2b q_y + (4a + 3b + 2c)
\end{align*}
\]

• Hence, increment by: $2(d_y - d_x)$

How to get an initial value for D?

- Suppose we start at: \(\langle q_x, q_y \rangle \)
- Initial midpoint is: \(\langle q_x + 1, q_y + 1/2 \rangle \)

\[
\begin{align*}
D_{\text{init}} &= f(q_x + 1, q_y + 1/2) \\
&= 2a q_x + 1 + 2b \left(q_y + \frac{1}{2} \right) + 2c
\end{align*}
\]

• Assume: $q_x < r_x$
 $0 \leq \text{slope} \leq 1$

Pre-computed: $2d_y$
$2(d_y - d_x)$
Generalize Algorithm

- If $q_x > r_x$, swap points
- If slope > 1, always increment y, conditionally increment x
- If -1 <= slope < 0, always increment x, conditionally decrement y
- If slope < -1, always decrement y, conditionally increment x
- Rework D increments

Bresenham’s Algorithm: Example

\[F(x,y) = 2D, x \leq y \]
\[F(x,y) = 2D x - 7y = 0 \]

(7,5)
Bresenham’s Algorithm: Example

Some issues with Bresenham’s Algorithms

- Pixel density varies based on slope
 - straight lines look darker, more pixels per unit length
- Endpoint order
- Line from P1 to P2 should match P2 to P1
- Always choose E when hitting M, regardless of direction

1994 Foley/VanDam/Finer/Hughes/Phillips ICG
Plain PBM Image File

- There is exactly one image in a file
- File begins with "magic number" "P1"
- Next line specifies pixel resolution
- Each pixel is represented by a byte containing ASCII ‘1’ (black) or ‘0’ (white)
- All fields/values separated by whitespace characters
- No line longer than 70 characters?

Plain PBM Image Example

```
P1
# foop.bpm
24 7
0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0
0 1 1 1 1 1 0 1 1 1 0 1 0 1 1 1 0 0 1 1 1 1 0
0 1 0 0 0 0 1 0 0 0 0 1 0 0 0 0 0 1 0 0 1 1 0
0 1 1 0 0 0 1 1 1 0 0 1 1 0 0 0 1 1 1 0 0 1 1 0
0 1 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 1 0 0 0 0
0 1 0 0 0 0 1 1 1 0 0 1 1 1 0 0 1 0 0 0 0 0
0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0
```

There is a newline character at the end of each of these lines.

Programming assignment 1

- Input PostScript-like file
- Output B/W PBM
- Primary I/O formats for the course
- Create data structure to hold points and lines in memory (the world model)
- Implement 2D translation, rotation and scaling of the world model
- Implement line drawing and clipping
- Due October 6th
- Get started now!

Questions?

Go to Assignment 1