Scissoring Clipping

Performed during scan conversion of the line (circle, polygon)

Compute the next point \((x,y)\)
If \(x_{\text{min}} \leq x \leq x_{\text{max}} \) and \(y_{\text{min}} \leq y \leq y_{\text{max}}\)
Then output the point.
Else do nothing

- Issues with scissoring:
 - Too slow
 - Does more work than necessary
- Better to clip lines to window, than “draw” lines that are outside of window

The Cohen-Sutherland Line Clipping Algorithm

- How to clip lines to fit in windows?
 - Easy to tell if whole line falls in window
 - Harder to tell what part falls inside
- Consider a straight line \(P_0 = (x_0,y_0)\) and \(P_1 = (x_1,y_1)\)
 - And window: \(WT, WB, WL\) and \(WR\)

Cohen-Sutherland

Basic Idea:
- **First**, do easy test
 - Completely inside or outside the box?
- **If no**, we need a more complex test
- **Note**: we will also need to figure out how line intersects the box

Cohen-Sutherland

Perform trivial accept and reject
- Assign each end point a location code
- Perform bitwise logical operations on a line’s location codes
- Accept or reject based on result
- Frequently provides no information
 - Then perform more complex line intersection
Cohen-Sutherland

- The Easy Test:
 - Compute 4-bit code based on endpoints \(P_1 \) and \(P_2 \)

Bit 1: 1 if point is above window, i.e. \(y > WT \).	1001	1000	1010	WT
Bit 2: 1 if point is below window, i.e. \(y < WB \).	0001	0000	0010	WB
Bit 3: 1 if point is right of window, i.e. \(x > WR \).	0101	0100	0110	WR
Bit 4: 1 if point is left of window, i.e. \(x < WL \).	1101	1100	1110	

Line is completely visible iff both code values of endpoints are 0, i.e. \(C_0 \cap C_1 = 0 \).

If line segments are completely outside the window, then \(C_0 \cap C_1 \neq 0 \).

Otherwise, we clip the lines:

- We know that there is a bit flip, w.l.o.g. assume its \((x_0, x_1)\).
- Which bit? Try `em all!
 - Suppose it’s bit 4
 - Then \(x_0 < WL \) and we know that \(x_1 \geq WL \).
 - We need to find the point: \((x_c, y_c)\).

Replacing \((x_0, y_0)\) with \((x_c, y_c)\):
- Re-compute codes
- Continue until all bit flips (clip lines) are processed, i.e. all points are inside the clip window.
Parametric Line Clipping

- Developed by Cyrus and Beck in 1978
- Used to clip 2D/3D lines against convex polygon/polyhedron
- Liang and Barsky (1984) algorithm efficient in clipping upright 2D/3D clipping regions
- Cyrus-Beck may be reduced to more efficient Liang-Barsky case
- Based on parametric form of a line
 - Line: \(P(t) = P_0 + t(P_1 - P_0) \)

Parametric Line Equation

- Line: \(P(t) = P_0 + t(P_1 - P_0) \)
- \(t \) value defines a point on the line going through \(P_0 \) and \(P_1 \)
- \(0 \leq t \leq 1 \) defines line segment between \(P_0 \) and \(P_1 \)
- \(P(0) = P_0 \quad P(1) = P_1 \)
The Cyrus-Beck Technique

- Cohen-Sutherland algorithm computes \((x,y)\) intersections of the line and clipping edge
- Cyrus-Beck finds a value of parameter \(t\) for intersections of the line and clipping edges
- Simple comparisons used to find actual intersection points
- Liang-Barsky optimizes it by examining \(t\) values as they are generated to reject some line segments immediately

Finding the Intersection Points

Line \(P(t) = P_0 + t(P_1 - P_0)\)
Point on the edge \(P_{ei}\)

Make sure
1. \(D \neq 0\), or \(P_1 \neq P_0\)
2. \(N_i \cdot D < 0\), lines are not parallel

Finding the Line Segment

- Calculate intersection points between line and every window line
 - Classify points as potentially entering (PE) or leaving (PL)
 - PE if segment crosses edge into inside half plane
- PE if segment crosses edge into inside half plane \(\Rightarrow\) angle between \(P_0P_1\) and \(N_i\) greater than \(90^\circ\)
- PL otherwise.
- Find \(T_e = \max(t_e)\)
- Find \(T_l = \min(t_l)\)
- Discard if \(T_e > T_l\)
- If \(T_e < 0\), \(T_e = 0\)
- If \(T_l > 1\), \(T_l = 1\)
- Use \(T_e, T_l\) to compute intersection coordinates \((x_e, y_e), (x_l, y_l)\)

2D Transformations

All represented as matrix operations on vectors!
Parallel lines preserved, angles/lengths not

- Scale
- Rotate
- Translate
- Reflect
- Shear

2D Affine Transformations

All represented as matrix operations on vectors!
Parallel lines preserved, angles/lengths not
2D Affine Transformations

- **Example 1:** rotation and non uniform scale on unit cube
- **Example 2:** shear first in x, then in y

Note:
- Preserves parallels
- Does not preserve lengths and angles

2D Transforms: Translation

- Rigid motion of points to new locations
 \[x' = x + d_x \]
 \[y' = y + d_y \]
- Defined with column vectors:
 \[\begin{bmatrix} x' \\ y' \end{bmatrix} = \begin{bmatrix} x \\ y \end{bmatrix} + \begin{bmatrix} d_x \\ d_y \end{bmatrix} \]

2D Transforms: Scale

- Stretching of points along axes:
 \[x' = s_x \cdot x \]
 \[y' = s_y \cdot y \]

In matrix form:
\[\begin{bmatrix} x' \\ y' \end{bmatrix} = \begin{bmatrix} s_x & 0 \\ 0 & s_y \end{bmatrix} \begin{bmatrix} x \\ y \end{bmatrix} \]

or just: \[P' = S \cdot P \]

2D Transforms: Rotation

- Rotation of points about the origin
 \[x' = x \cdot \cos \theta - y \cdot \sin \theta \]
 \[y' = x \cdot \sin \theta + y \cdot \cos \theta \]
 Positive Angle: CCW
 Negative Angle: CW

In matrix form:
\[\begin{bmatrix} x' \\ y' \end{bmatrix} = \begin{bmatrix} \cos \theta & -\sin \theta \\ \sin \theta & \cos \theta \end{bmatrix} \begin{bmatrix} x \\ y \end{bmatrix} \]

or just: \[P' = R \cdot P \]

Homogeneous Coordinates

- Observe: translation is treated differently from scaling and rotation
- Homogeneous coordinates: allows all transformations to be treated as matrix multiplications
 Example: A 2D point \((x, y)\) is the line \((x, y, w)\), where \(w\) is any real #, in 3D homogeneous coordinates.

To get the point, homogenize by dividing by \(w\) (i.e. \(w=1\))
Recall our Affine Transformations

Matrix Representation of 2D Affine Transformations

Translation:
\[
\begin{bmatrix}
x' \\
y' \\
1
\end{bmatrix} = \begin{bmatrix} 1 & 0 & d_x \\ 0 & 1 & d_y \\ 0 & 0 & 1 \end{bmatrix} \begin{bmatrix} x \\ y \\
1 \end{bmatrix}
\]

Scale:
\[
\begin{bmatrix}
x' \\
y' \\
1
\end{bmatrix} = \begin{bmatrix} s_x & 0 & 0 \\ 0 & s_y & 0 \\ 0 & 0 & 1 \end{bmatrix} \begin{bmatrix} x \\ y \\
1 \end{bmatrix}
\]

Rotation:
\[
\begin{bmatrix}
x' \\
y' \\
1
\end{bmatrix} = \begin{bmatrix} \cos \theta & -\sin \theta & 0 \\ \sin \theta & \cos \theta & 0 \\ 0 & 0 & 1 \end{bmatrix} \begin{bmatrix} x \\ y \\
1 \end{bmatrix}
\]

Shear:
\[
\begin{bmatrix}
x' \\
y' \\
1
\end{bmatrix} = \begin{bmatrix} 1 & 0 & 0 \\ 0 & 1 & 0 \\ 0 & 0 & 1 \end{bmatrix} \begin{bmatrix} x \\ y \\
1 \end{bmatrix}
\]

Translation
\[
\begin{bmatrix}
x' \\
y' \\
1
\end{bmatrix} = \begin{bmatrix} 1 & 0 & d_x \\ 0 & 1 & d_y \\ 0 & 0 & 1 \end{bmatrix} \begin{bmatrix} x \\ y \\
1 \end{bmatrix}
\]

Composition of 2D Transforms

Composition of 2D Transforms

Composition of 2D Transforms

Composition of 2D Transforms

Composition of 2D Transforms
Composition of 2D Transforms

- Be sure to multiple transformations in proper order!

\[P' = (T * (R * (S * (T * P)))) \]
\[P' = ((T * (R * (S * T))) * P) \]
\[P' = T * P \]

Programming assignment 1

- Implement Simplified Postscript reader
- Implement 2D transformations
- Implement Cohen-Sutherland clipping
 - Generalize edge intersection formula
- Generalize DDA or Bresenham algorithm
- Implement PBM image writer

HW1 Steps

- Read in line segments from file
- Apply transformations
- Clip against world window
- Translate lines into screen/image coordinates
- Draw clipped lines into software frame buffer
- Output frame buffer pixels to standard out either in PBM format