CS 430
Computer Graphics

Polygon Clipping and Filling
Week 3, Lecture 5

David Breen, William Regli and Maxim Peysakhov
Department of Computer Science
Drexel University
Outline

• Polygon clipping
 – Sutherland-Hodgman,
 – Weiler-Atherton

• Polygon filling
 – Scan filling polygons
 – Flood filling polygons

• Introduction and discussion of homework #2
Polygon

- Ordered set of vertices (points)
 - Usually counter-clockwise
- Two consecutive vertices define an edge
- Left side of edge is inside
- Right side is outside
- Last vertex implicitly connected to first
- In 3D vertices should be co-planar
Polygon Clipping

• Lots of different cases
• Issues
 – Edges of polygon need to be tested against clipping rectangle
 – May need to add new edges
 – Edges discarded or divided
 – Multiple polygons can result from a single polygon
The Sutherland-Hodgman Polygon-Clipping Algorithm

• Divide and Conquer

• Idea:
 – Clip single polygon using single infinite clip edge
 – Repeat 4 times

• Note the generality:
 – 2D convex n-gons can clip arbitrary n-gons
 – 3D convex polyhedra can clip arbitrary polyhedra
Sutherland-Hodgman Algorithm

• Input:
 – v_1, v_2, \ldots, v_n the vertices defining the polygon
 – Single infinite clip edge w/ inside/outside info

• Output:
 – v'_1, v'_2, \ldots, v'_m, vertices of the clipped polygon

• Do this 4 (or n_e) times

• Traverse vertices (edges)
• Add vertices one-at-a-time to output polygon
 – Use inside/outside info
 – Edge intersections
Sutherland-Hodgman Algorithm

- Can be done incrementally
- If first point inside add. If outside, don’t add
- Move around polygon from v_1 to v_n and back to v_1
- Check v_i, v_{i+1} wrt the clip edge
- Need v_i, v_{i+1}‘s inside/outside status
- Add vertex one at a time. There are 4 cases:

Case 1: Inside	Outside
Polygon being clipped | Clip boundary
p: output

Case 2: Inside	Outside
p: output

Case 3: Inside	Outside
(p: second output

Case 4: Inside	Outside
i: first output

1994 Foley/VanDam/Finer/Huges/Phillips ICG
Sutherland-Hodgman Algorithm

• Given polygon $P \quad P' = P$
 – foreach clipping edge (there are 4) {
 • Clip polygon P' to clipping edge
 – foreach edge in polygon P'
 » Check clipping cases (there are 4)
 » Case 1 : Output v_{i+1} to P''
 » Case 2 : Output intersection point to P''
 » Case 3 : No output
 » Case 4 : Output intersection point & v_{i+1} to P''
 • $P' = P''$
 }

}
Sutherland-Hodgman Algorithm

Animated by Max Peysakhov @ Drexel University
Final Result

Note: Edges XY and ZW!
Issues with Sutherland-Hodgman Algorithm

• Clipping a concave polygon
• Can produce two CONNECTED areas
Weiler-Atherton Algorithm

- General clipping algorithm for concave polygons with holes
- Produces multiple polygons (with holes)
- Make linked list data structure
- Traverse to make new polygon(s)
Weiler-Atherton Algorithm

• Given polygons A and B as linked list of vertices (counter-clockwise order)
• Find all edge intersections & place in list
• Insert as “intersection” nodes
• Nodes point to A & B
• Determine in/out status of vertices
Linked List Data Structure

Intersection Nodes
Intersection Special Cases

- If “intersecting” edges are parallel, ignore
- Intersection point is a vertex
 - Vertex of A lies on a vertex or edge of B
 - Edge of A runs through a vertex of B
 - Replace vertex with an intersection node
Weiler-Atherton Algorithm: Union

• Find a vertex of A outside of B
• Traverse linked list
• At each intersection point switch to other polygon
• Do until return to starting vertex
• All visited vertices and nodes define union’ed polygon
Example: Union

\{V1, V2, V3, P0, V8, V4, P3, V0\}, \{V6, P1, P2\}
Example
Result
Weiler-Atherton Algorithm: Intersection

• Start at intersection point
 – If connected to an “inside” vertex, go there
 – Else step to an intersection point
 – If neither, stop
• Traverse linked list
• At each intersection point switch to other polygon and remove intersection point list
• Do until return to starting intersection point
• If intersection list not empty, pick another one
• All visited vertices and nodes define and’ed polygon
Example: Intersection

{P1, V7, P0}, {P3, V5, P2}
Boolean Special Cases

If polygons don’t intersect

– Union

 • If one inside the other, return polygon that surrounds the other

 • Else, return both polygons

– Intersection

 • If one inside the other, return polygon inside the other

 • Else, return no polygons
Point P Inside a Polygon?

- Connect P with another point P' that you know is outside polygon
- Intersect segment PP' with polygon edges
- Watch out for vertices!
- If # intersections is even (or 0) \rightarrow Outside
- If odd \rightarrow Inside
Point P Inside a Rectangle?

• Just re-use code from Cohen-Sutherland algorithm
• If a vertex’s bit code equals zero, it’s inside
• Else, it’s outside
Edge clipping

• Re-use line clipping from HW1
 – Similar triangles method
 – Cyrus-Beck line clipping

• Yet another technique
Intersecting Two Edges (1)

• Edge 0 : \((P_0, P_1)\)
• Edge 2 : \((P_2, P_3)\)
• \(E_0 = P_0 + t_0*(P_1-P_0)\) \(D_0 \equiv (P_1-P_0)\)
• \(E_2 = P_2 + t_2*(P_3-P_2)\) \(D_2 \equiv (P_3-P_2)\)
• \(P_0 + t_0*D_0 = P_2 + t_2*D_2\)
• \(x_0 + dx_0 * t_0 = x_2 + dx_2 * t_2\)
• \(y_0 + dy_0 * t_0 = y_2 + dy_2 * t_2\)
Intersecting Two Edges (2)

- Solve for t’s
- \(t_0 = \frac{((x_0 - x_2) \cdot dy_2 + (y_2 - y_0) \cdot dx_2)}{(dy_0 \cdot dx_2 - dx_0 \cdot dy_2)} \)
- \(t_2 = \frac{((x_2 - x_0) \cdot dy_0 + (y_0 - y_2) \cdot dx_0)}{(dy_2 \cdot dx_0 - dx_2 \cdot dy_0)} \)
- See http://www.vb-helper.com/howto_intersect_lines.html for derivation
- Edges intersect if \(0 \leq t_0, t_2 \leq 1 \)
- Edges are parallel if denominator = 0
Examples

$0 \leq t_0, t_2 \leq 1$

t_0, t_2 \leq 0

t_2 \leq 0
\quad 0 \leq t_0 \leq 1
Filling Primitives: Rectangles, Polygons & Circles

• Two part process
 – Which pixels to fill?
 – What values to fill them with?

• Idea: Coherence
 – Spatial: pixels are the same from pixel-to-pixel and scan-line to scan line;
 – Span: all pixels on a span get the same value
 – Scan-line: consecutive scan lines are the same
 – Edge: pixels are the same along edges
Scan Filling Primitives: Rectangles

- Easy algorithm
 - Fill from x_{min} to x_{max}
 - Fill from y_{min} to y_{max}

- Issues
 - What if two adjacent rectangles share an edge?
 - Color the boundary pixels twice?
- Rules:
 - Color only interior pixels
 - Color left and bottom edges
Scan Filling Primitives: Polygons

- Observe:
 - FA, DC intersections are integer
 - FE, ED intersections are not integer

- For each scan line, how to figure out which pixels are inside the polygon?
Scan Filling Polygons

- Idea #1: use midpoint algo on each edge, fill in between extrema points
- Note: many extrema pixels lie outside the polygon
- Why: midpoint algo has no sense of in/out

(a) Span extrema Other pixels in the span
Scan Filling Polygons

• Idea #2: draw pixels only strictly inside
 – Find intersections of scan line with edges
 – Sort intersections by increasing x coordinate
 – Fill pixels on inside based on a parity bit
 • B_p initially even (off)
 • Invert at each intersect
 • Draw when odd, do not draw when even
Scan Filling Polygons

• Issues with Idea #2:
 – If at a fractional x value, how to pick which pixels are in interior?
 – Intersections at integer vertex coordinates?
 – Shared vertices?
 – Vertices that define a horizontal edge?
How to handle vertices?

- **Problem:**
 - vertices are counted twice

- **Solution:**
 - If both neighboring vertices are on the same side of the scan line, don’t count it
 - If both neighboring vertices are on different sides of a scan line, count it once
 - Compare current y value with y value of neighboring vertices
Scan-Filling a Polygon

Animated by Max Peysakhov @ Drexel University
How to handle horizontal edges?

- Idea: don’t count their vertices
- Apply open and closed status to vertices to other edges
 - y_{min} vertex closed
 - y_{max} vertex is open
- On AB, A is at y_{min} for JA; AB does not contribute, B_p is odd and draw AB
- Edge BC has y_{min} at B, but AB does not contribute, B_p becomes even and drawing stops
How to handle horizontal edges?

• Start drawing at IJ (B_p becomes odd).
• C is y_{max} (open) for BC. B_p doesn’t change.
• Ignore CD. D is y_{min} (closed) for DE. B_p becomes even. Stop drawing.
• I is y_{max} (open) for IJ. No drawing.
• Ignore IH. H is y_{min} (closed) for GH. B_p becomes odd. Draw to FE.
• Ignore GF. No drawing
Polygon Filling Algorithm

- For each polygon
 - For each edge, mark each scan-line y that the edge crosses by examining its y_{min} and y_{max}
 - If edge is horizontal, ignore it
 - If y_{max} on scan-line, ignore it
 - If $y_{min} \leq y < y_{max}$ add edge to scan-line y's edge list
 - For each scan-line between polygon’s y_{min} and y_{max}
 - Calculate intersections with edges on list
 - Sort intersections in x
 - Perform parity-bit scan-line filling
 - Apply floor on first xsect and ceiling on second xsect
 - Check for double intersection special case
- Clear scan-lines’ edge list
Example

E1, E2, E3, E4, E5, E6
How to handle slivers?

• When the scan area does not have an “interior”
• Solution: use anti-aliasing
• But, to do so will require softening the rules about drawing only interior pixels
Scan Filling Curved Objects

- Hard in general case
- Easier for circles and ellipses.
- Use midpoint Alg to generate boundary points.
- Fill in horizontal pixel spans
- Use symmetry
Boundary-Fill Algorithm

- Start with some internal point \((x,y)\)
- Color it
- Check neighbors for filled or border color
- Color neighbors if OK
- Continue recursively
Void BoundaryFill4(int x, int y, int fill, int bnd)
{
 If Color(x,y) != fill and Color(x,y) != bnd
 {
 SetColor(x,y) = fill;
 BoundaryFill4(x+1, y, fill, bnd);
 BoundaryFill4(x, y+1, fill, bnd);
 BoundaryFill4(x-1, y, fill, bnd);
 BoundaryFill4(x, y-1, fill, bnd);
 }
}
Boundary-Fill Algorithm

• Issues with recursive boundary-fill algorithm:
 – May make mistakes if parts of the space already filled with the Fill color
 – Requires very big stack size

• More efficient algorithms
 – First color contiguous span along one scan line
 – Only stack beginning positions of neighboring scan lines
Plain PBM Image files

- There is exactly one image in a file.
- The "magic number" is "P1" instead of "P4".
- Each pixel in the raster is represented by a byte containing ASCII '1' or '0', representing black and white respectively. There are no fill bits at the end of a row.
- White space in the raster section is ignored.
- You can put any junk you want after the raster, if it starts with a white space character.
- No line should be longer than 70 characters.

Here is an example of a small image in the plain PBM format.

```
P1
# feep.pbm
24 7
0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0
0 1 1 1 1 0 0 1 1 1 1 0 0 1 1 1 1 0 0 1 1 1 1 0
0 1 0 0 0 0 0 1 0 0 0 0 0 1 0 0 0 0 0 1 0 0 1 0
0 1 1 1 0 0 0 1 1 1 1 0 0 1 1 1 1 0 0 1 1 1 1 0
0 1 0 0 0 0 0 1 0 0 0 0 1 0 0 0 0 1 0 0 1 0
0 1 0 0 0 0 0 1 1 1 1 1 0 0 1 1 1 1 1 0 0 1 0 0 0
0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0
```

There is a newline character at the end of each of these lines.
Plain PBM Image File

- There is exactly one image in a file
- File begins with ”magic number” “P1”
- Next line specifies pixel resolution
- Each pixel is represented by a byte containing ASCII ‘1’ (black) or ‘0’ (white)
- All fields/values separated by whitespace characters
- No line longer than 70 characters?
Plain PBM Image Example

P1
feep.pbm
24 7
0 0
0 1 1 1 1 0 0 1 1 1 1 0 0 1 1 1 1 0 0 1 1 1 1 0
0 1 0 0 0 0 0 0 0 0 1 0 0 0 0 0 0 0 1 0 0 0 0 0 0 1 0 0 1 0
0 1 1 1 0 0 0 1 1 1 0 0 0 1 1 1 0 0 0 1 1 1 1 0
0 1 0 0 0 0 0 0 1 0 0 0 0 0 1 0 0 0 0 0 1 0 0 0 0
0 1 0 0 0 0 0 0 1 1 1 1 0 0 1 1 1 1 0 0 1 1 1 1 0
0 0

There is a newline character at the end of each of these lines.
Course Status

So far everything straight lines!

• How to model 2D curved objects?
 – Representation
 • Circles
 • Types of 2D Curves
 • Parametric Cubic Curves
 • Bézier Curves, (non)uniform, (non)rational
 • NURBS
 – Drawing of 2D Curves
 • Line drawing algorithms for complex curves
 • DeCasteljeau, Subdivision, De Boor
Homework #2

- Modify homework #1
- Add reading “moveto” and “lineto” commands
- They define closed polygons
- Transform polygon vertices
- Clip polygons against window with Sutherland-Hodgman algorithm
- Display edges with HW1 line-drawing code
Programming assignment 3

- Input PostScript-like file.
- Output B/W PBM.
- Implement viewports.
- Use HW2 for polygon clipping.
- Implement scanline polygon filling. (*You can not use flood filling algorithms*)