Outline

- Scan conversion of circles
- Clipping circles
- Scan conversion of ellipses

Scan Conversion of Circles

- Implicit representation of the circle function:
 \[F(x, y) = x^2 + y^2 - R^2 = 0. \]
- Note: \(F(x, y) < 0 \) for points inside the circle, and \(F(x, y) > 0 \) for points outside the circle
- Assume we finished pixel \((x_n, y_n)\)
- What pixel to draw next? (going clockwise)
 - Note: the slope of the circular arc is between 0 and -1
 - Hence, choice is between \(E\) and \(SE\)
 - Idea: If the circle passes above the midpoint \(M\), then we go to \(E\) next, otherwise we go to \(SE\)
- We need a decision variable \(D\):
 \[D = F(M) = F(x_n + 1, y_n - 1) = (x_n + 1)^2 + (y_n - 1)^2 - R^2. \]
 - If \(D < 0 \) then \(M\) is below the arc, hence the \(E\) pixel is closer to the line.
 - If \(D \geq 0 \) then \(M\) is above the arc, hence the \(SE\) pixel is closer to the line.
Case I: When \(E \) is next

- What increment for computing a new \(D \)?
- Next midpoint is: \((x_p + 2, y_p - (1/2)) \)
 \[
 D_{new} = f(x_p + 2, y_p - \frac{1}{2}) = (x_p + 2)^2 + (y_p - \frac{1}{2})^2 - R^2
 \]
 \[
 = (x_p^2 + 4x_p + 4) + (y_p - \frac{1}{2})^2 - R^2
 \]
 \[
 = (x_p^2 + 2x_p + 1) + (2x_p + 3) + (y_p - \frac{1}{2})^2 - R^2
 \]
 \[
 = (y_p + 1)^2 + (2x_p + 3) + (y_p - \frac{1}{2})^2 - R^2
 \]
- Hence, increment by: \(2x_p + 3 \)

Case II: When \(SE \) is next

- What increment for computing a new \(D \)?
- Next midpoint is: \((x_p + 2, y_p - 1 - (1/2)) \)
 \[
 D_{new} = f(x_p + 2, y_p - \frac{3}{2}) = (x_p + 2)^2 + (y_p - \frac{3}{2})^2 - R^2
 \]
 \[
 = (x_p^2 + 4x_p + 4) + (y_p - \frac{3}{2})^2 - R^2
 \]
 \[
 = (x_p^2 + 2x_p + 1) + (2x_p + 3) + (y_p - \frac{3}{2})^2 - R^2
 \]
 \[
 = (y_p + 1)^2 + (2x_p + 3) + (y_p - \frac{3}{2})^2 - R^2
 \]
 \[
 = (x_p + 1)^2 + (y_p - \frac{1}{2})^2 - R^2
 \]
- Hence, increment by: \(2x_p - 2y_p + 5 \)

Scan Conversion of Circles

- How to compute the initial value of \(D \):
 - We start with \(x = 0 \) and \(y = R \), so the first midpoint is at \(x = 1, y = R - 1/2 \):
 \[
 D_{new} = f(1, R - \frac{1}{2}) = 1 + (R - \frac{1}{2})^2 - R^2
 \]
 \[
 = 1 + R^2 - R + \frac{1}{4} - R^2
 \]
 \[
 = \frac{5}{4} - R
 \]

Circle Scan Conversion Algorithm

- Given radius \(R \) and center \((0, 0)\)
 - First point \(\rightarrow (0, R) \)
- Initial decision parameter \(D = 1 - R \)
- While \(x \leq y \)
 - If \(D < 0 \)
 - \(x++ \); \(D += 2x + 3 \);
 - else
 - \(x++ \); \(y-- \); \(D += 2(x - y) + 5 \)
 - WritePoints(x, y)

WritePoints(x, y)

- Writes pixels to the seven other octants
Clipping Circles

- Accept/Reject test
 - Does bounding box of the circle intersect with clipping box?
- If yes, condition pixel write on clipping box inside/outside test

Properties of Ellipses

- "Elongated circle"
- For all points on ellipse, sum of distances to foci is constant
 \[d_1 + d_2 = \text{const} \]
- If \(F_1 = (x_1, y_1) \) and \(F_2 = (x_2, y_2) \)
 then
 \[\sqrt{(x-x_1)^2 + (y-y_1)^2} + \sqrt{(x-x_2)^2 + (y-y_2)^2} = \text{const} \]

Midpoint Algorithm (initializing)

- Similar to circles
- The initial value for region 1
 \[D_{\text{init}} = f(x, r) - \frac{1}{2} \]
 \[= r^2 - r_1^2 \]
- The initial value for region 2
 \[D_{\text{init}} = f(x + \frac{1}{2}, y - \frac{1}{2}) - \frac{1}{2} \]
 \[= r^2 - r_1^2 \]
- We have initial values, now we need the increments

Making a Decision

- Computing the decision variable
 \[D = f(x, y) + \frac{1}{2} \]
 \[= r^2 - r_1^2 - r_2^2 \]
- If \(D < 0 \) then \(M \) is below the arc, hence the \(E \) pixel is closer to the line.
- If \(D \geq 0 \) then \(M \) is above the arc, hence the \(SE \) pixel is closer to the line.

Symmetry Considerations

- 4-way symmetry
- Unit steps in \(x \) until reach region boundary
- Switch to unit steps in \(y \)
- \(f(x, y) = r_1^2 x^2 + r_2^2 y^2 - 2r_1 r_2 x y \)
 - Step in \(y \) while \(r_1^2 x < r_2^2 y \)
 - Switch to steps in \(y \) when \(r_1^2 x = r_2^2 y \)
Computing the Increment

E case
\[D_{\text{new}} = f(x_p + 2, y_p - 2) \]
\[= r_1^2(x_p + 2, y_p - 2) - r_2^2 \]
\[= D_{\text{old}} + r_1^2(2x_p + 3) \]

SE case
\[D_{\text{new}} = f(x_p + 2, y_p - 4) \]
\[= r_1^2(x_p + 2, y_p - 2) - r_2^2 \]
\[= D_{\text{old}} + r_1^2(2x_p + 3) + r_2^2(-2y_p + 2) \]

Increment
\[r_1^2(2x_p + 3) \]
\[r_1^2(2x_p + 3) + r_2^2(-2y_p + 2) \]

Computing the Increment in 2nd Region

- Decision variable in 2nd region
 \[D = f(x_p + 1, y_p - 1) \]
 \[= r_1^2(x_p + 1, y_p - 1) - r_2^2 \]

- If \(D < 0 \) then \(M \) is left of the arc, hence the SE pixel is closer to the line.
- If \(D > 0 \) then \(M \) is right of the arc, hence the S pixel is closer to the line.

Midpoint Algorithm for Ellipses

Region 1
- Set first point to \((0,0)\)
- Set the Decision variable to \(D_{\text{new}} = r_1^2(x, y) - r_2^2\)
- Loop \(k = 0 \rightarrow 1\)
 - If \(D = 0 \) then pick E and
 - If \(D > 0 \) then pick SE
 - \(D = r_1^2(x, y) + r_2^2(-2y + 2) \)
- Until \(2y = 2r_1^2 \)

Region 2
- Set first point to the last computed
- Set the Decision variable to \(D_{\text{new}} = r_1^2(x, y) - r_2^2\)
- Loop \(k = 0 \rightarrow 1\)
 - If \(D = 0 \) then pick SE and
 - If \(D > 0 \) then pick S
 - \(D = r_1^2(x, y) + r_2^2(-2y + 3) \)
- Until \(y < 0 \)

Use symmetry to complete the ellipse