Outline

• Scan conversion of circles
• Clipping circles
• Scan conversion of ellipses
Scan Conversion of Circles

• Generalization of the line algorithm
• Assumptions:
 – circle at (0,0)
 – Fill 1/8 of the circle, then use symmetry

Using the 8-way symmetry of a circle:
Scan Conversion of Circles

• Implicit representation of the circle function:

\[F(x, y) = x^2 + y^2 - R^2 = 0. \]

• Note: \(F(x, y) < 0 \) for points inside the circle, and \(F(x, y) > 0 \) for points outside the circle.
Scan Conversion of Circles

- Assume we finished pixel \((x_p, y_p)\)
- What pixel to draw next? (going clockwise)
- Note: the slope of the circular arc is between 0 and –1
 - Hence, choice is between: \(E\) and \(SE\)
- Idea:
 If the circle passes above the midpoint \(M\), then we go to \(E\) next, otherwise we go to \(SE\)
Scan Conversion of Circles

- We need a decision variable D:

$$D = F(M) = F(x_p + 1, y_p - \frac{1}{2})$$

$$= (x_p + 1)^2 + (y_p - \frac{1}{2})^2 - R^2.$$

- If $D < 0$ then M is below the arc, hence the E pixel is closer to the line.
- If $D \geq 0$ then M is above the arc, hence the SE pixel is closer to the line.
Case I: When E is next

- What increment for computing a new D?
- Next midpoint is: $(x_p + 2, y_p - (1/2))$

\[
D_{new} = F(x_p + 2, y_p - \frac{1}{2})
\]
\[
= (x_p + 2)^2 + (y_p - \frac{1}{2})^2 - R^2
\]
\[
= (x_p^2 + 2x_p + 4) + (y_p - \frac{1}{2})^2 - R^2
\]
\[
= (x_p^2 + 2x_p + 1) + (2x_p + 3) + (y_p - \frac{1}{2})^2 - R^2
\]
\[
= (x_p + 1)^2 + (2x_p + 3) + (y_p - \frac{1}{2})^2 - R^2
\]
\[
= D + (2x_p + 3).
\]

- Hence, increment by: $(2x_p + 3)$
Case II: When SE is next

• What increment for computing a new D?

• Next midpoint is: $(x_p + 2, y_p - 1 - (1/2))$

\[D_{new} = F(x_p + 2, y_p - \frac{3}{2}) \]
\[= (x_p + 2)^2 + (y_p - \frac{3}{2})^2 - R^2 \]
\[= (x_p^2 + 4x_p + 4) + (y_p^2 - 3y_p + \frac{9}{4}) - R^2 \]
\[= (x_p^2 + 2x_p + 1) + (2x_p + 3) + (y_p^2 - y_p + \frac{1}{4}) + (-2y_p + \frac{8}{4}) - R^2 \]
\[= (x_p + 1)^2 + (y_p - \frac{1}{2})^2 - R^2 + (2x_p + 3) + (-2y_p + 2) \]
\[= D + (2x_p - 2y_p + 5) \]

• Hence, increment by: $(2x_p - 2y_p + 5)$
Scan Conversion of Circles

• How to compute the *initial* value of D:
• We start with \(x = 0 \) and \(y = R \), so the first midpoint is at \(x = 1, y = R-1/2 \):

\[
D_{\text{init}} = F(1, R - \frac{1}{2})
\]

\[
= 1 + (R - \frac{1}{2})^2 - R^2
\]

\[
= 1 + R^2 - R + \frac{1}{4} - R^2
\]

\[
= \frac{5}{4} - R.
\]
Scan Conversion of Circles

• Converting this to an integer algorithm:
 – Need only know if D is positive or negative
 – D & R are integers
 – Note D is incremented by an integer value
 – Therefore $D + 1/4$ is positive only when D is positive; it is safe to drop the 1/4

• Hence: set the initial D to $1 - R$ (subtracting 1/4)
Circle Scan Conversion Algorithm

• Given radius R and center $(0, 0)$
 – First point $\rightarrow (0, R)$
• Initial decision parameter $D = 1 - R$
• While $x \leq y$
 – If $(D < 0)$
 • $x++; D += 2x + 3$
 – else
 • $x++; y--; D += 2(x - y) + 5$
 – WritePoints(x, y)
WritePoints(x,y)

- Writes pixels to the seven other octants
Clipping Circles

• **Accept/Reject test**
 – Does bounding box of the circle intersect with clipping box?
• If yes, condition pixel write on clipping box inside/outside test
Properties of Ellipses

- “Elongated circle”
- For all points on ellipse, sum of distances to foci is constant

\[d_1 + d_2 = \text{const} \]

- If \(F_1 = (x_1, y_1) \) and \(F_2 = (x_2, y_2) \) then

\[\sqrt{(x - x_1)^2 + (y - y_1)^2} + \sqrt{(x - x_2)^2 + (y - y_2)^2} = \text{const} \]
Properties of Ellipses

- Equation simplified if ellipse axis parallel to coordinate axis
 \[
 \left(\frac{x - x_c}{r_x}\right)^2 + \left(\frac{y - y_c}{r_y}\right)^2 = 1
 \]

- Parametric form
 \[
 x = x_c + r_x \cos \theta \\
 y = y_c + r_y \sin \theta
 \]
Symmetry Considerations

- 4-way symmetry
- Unit steps in x until reach region boundary
- Switch to unit steps in y

\[f(x, y) = r_y^2 x^2 + r_x^2 y^2 - r_x^2 r_y^2 \]

\[\frac{dy}{dx} = -\frac{r_y^2 x}{r_x^2 y} \]
\[\frac{dy}{dx} = -1 \]
\[r_y^2 x = r_x^2 y \]

- Step in x while
 \[r_y^2 x < r_x^2 y \]
- Switch to steps in y when
 \[r_y^2 x \geq r_x^2 y \]
Midpoint Algorithm (initializing)

- Similar to circles
- The initial value for region 1
 \[D_{init1} = f(1, r_y - \frac{1}{2}) = r_y^2 - r_x^2 r_y + \frac{1}{4} r_x^2 \]
- The initial value for region 2
 \[D_{init2} = f(x_p + \frac{1}{2}, y_p - 1) = r_y^2 (x_p + \frac{1}{2})^2 + r_x^2 (y_p - 1)^2 - r_x^2 r_y^2 \]
- We have initial values, now we need the increments
Making a Decision

- Computing the decision variable

\[D = f(x_p + 1, y_p - \frac{1}{2}) \]

\[= r^2_y (x_p + 1)^2 + r^2_x (y_p - \frac{1}{2})^2 - r_x^2 r_y^2 \]

- If \(D < 0 \) then \(M \) is below the arc, hence the \(E \) pixel is closer to the line.

- If \(D \geq 0 \) then \(M \) is above the arc, hence the \(SE \) pixel is closer to the line.
Computing the Increment

E case

\[D_{\text{new}} = f(x_p + 2, y_p - \frac{1}{2}) \]
\[= r_y^2(x_p + 2)^2 + r_x^2(y_p - \frac{1}{2})^2 - r_x^2r_y^2 \]
\[= D_{\text{old}} + r_y^2(2x_p + 3) \]

SE case

\[D_{\text{new}} = f(x_p + 2, y_p - \frac{3}{2}) \]
\[= r_y^2(x_p + 2)^2 + r_x^2(y_p - \frac{3}{2})^2 - r_x^2r_y^2 \]
\[= D_{\text{old}} + r_y^2(2x_p + 3) + r_x^2(-2y_p + 3) \]

increment = \[\begin{cases}
 r_y^2(2x_p + 3) & D_{\text{old}} < 0 \\
 r_y^2(2x_p + 3) + r_x^2(-2y_p + 2) & D_{\text{old}} \geq 0
\end{cases} \]
Computing the Increment in 2nd Region

- Decision variable in 2nd region

\[D = f(x_p + \frac{1}{2}, y_p - 1) = r_y^2(x_p + \frac{1}{2})^2 + r_x^2(y_p - 1)^2 - r_x^2 r_y^2 \]

- If \(D < 0 \) then \(M \) is left of the arc, hence the \(SE \) pixel is closer to the line.

- If \(D \geq 0 \) then \(M \) is right of the arc, hence the \(S \) pixel is closer to the line.
Computing the Increment in 2nd Region

SE case

\[D_{new} = f(x_p + \frac{3}{2}, y_p - 2) \]
\[= r_y^2 (x_p + \frac{3}{2})^2 + r_x^2 (y_p - 2)^2 - r_x^2 r_y^2 \]
\[= D_{old} + r_x^2 (-2y_p + 3) + r_y^2 (2x_p + 2) \]

S case

\[D_{new} = f(x_p + \frac{1}{2}, y_p - 2) \]
\[= r_y^2 (x_p + \frac{1}{2})^2 + r_x^2 (y_p - 2)^2 - r_x^2 r_y^2 \]
\[= D_{old} + r_x^2 (-2y_p + 3) \]

increment

\[\text{increment} = \begin{cases}
 r_x^2 (-2y_p + 3) + r_y^2 (2x_p + 2) & D_{old} < 0 \\
 r_x^2 (-2y_p + 3) & D_{old} \geq 0
\end{cases} \]
Midpoint Algorithm for Ellipses

Region 1

Set first point to \((0,r_y)\)
Set the Decision variable to
\[
D_{init1} = r_y^2 - r_x^2 r_y + \frac{1}{4} r_x^2
\]
Loop \((x = x+1)\)

If \(D < 0\) then pick \(E\) and
\[
D \; + = \; r_y^2 (2x_p + 3)
\]
If \(D \geq 0\) then pick \(SE\) and
\[
D \; + = \; r_y^2 (2x_p + 3) + r_x^2 (-2y_p + 2)
\]

Until \(2r_y^2 x_k \geq 2r_x^2 y_k\)

Region 2

Set first point to the last computed
Set the Decision variable to
\[
D_{init2} = r_y^2 (x_p + \frac{1}{2})^2 + r_x^2 (y_p - 1)^2 - r_x^2 r_y
\]
Loop \((y = y - 1)\)

If \(D < 0\) then pick \(SE\) and
\[
D \; + = \; r_y^2 (2x_p + 2) + r_x^2 (-2y_p + 3)
\]
If \(D \geq 0\) then pick \(S\) and
\[
D \; + = \; r_x^2 (-2y_p + 3)
\]

Until \(y < 0\)
Use symmetry to complete the ellipse