Outline

- Drawing of 2D Curves
 - De Casteljau algorithm
 - Subdivision algorithm
 - Drawing parametric curves

The de Casteljau Algorithm

- How to compute a sequence of points that approximates a smooth curve given a set of control points?
- Developed by Paul de Casteljau at Citroën in the late 1950s
- Idea: recursively subdivide the curve and add points to refine the number of control points

Recall: Linear Interpolation

- Simple example
 - interpolating along the line between two points
 - (really an affine combination of points a and b)
 - \(x(t) = a + (b-a)t \)

Properties of Piecewise Linear Interpolations

- Given
 - continuous curve, \(C \)
 - piecewise linear interpolant (PLI) of \(C \)
 - and an arbitrary plane, \(P \)
- Then:
 The number of crossings of \(P \) by PLI is no greater than those of \(C \)

Linear Interpolation: Example 1

- Constructing a parabola using three control points
- From analytic geometry

\[
\text{ratio}(u, v, w) = \frac{(v - u)}{(w - u)}
\]

\[
\text{ratio}(b_0, b_1, b_2) = \text{ratio}(b_1, b_2, b_3) = \text{ratio}(b_0, b_1, b_2) = t
\]
The de Casteljau Algorithm

Basic case, with two points:
- Plotting a curve via repeated linear interpolation
 - Given \(p_0, p_1, \ldots \)
 - a sequence of control points
 - Simple case: Mapping a parameter \(u \) to the line \(p_0, p_1 \)

\[p(u) = (1 - u)p_0 + up_1 \quad \text{for } 0 \leq u \leq 1 \]

The de Casteljau Algorithm

- Generalizing to three points
 - Interpolate \(p_0, p_1, \) and \(p_2 \)
 - Interpolate along the resulting points

\[p_0(u) = (1 - u)p_0 + up_1 \]
\[p_1(u) = (1 - u)p_1 + up_2 \]

The de Casteljau Algorithm

- The complete solution from the algorithm for three iterations:

\[p_0(u) = (1 - u)p_0 + up_1 \]
\[p_1(u) = (1 - u)p_1 + up_2 \]
\[p(u) = (1 - u)p_0(u) + up_1(u) \]

Input:
- \(p_0, p_1, p_2, \ldots, p_n \in \mathbb{R}^3 \), \(t \in \mathbb{R} \)
- Iteratively set:

\[p_r(t) = (1 - t)p_{r-1}(t) + tp_r(t) \quad \text{for } r = 1, \ldots, n \]
\[p_i(t) = p_i \quad \text{for } i = 0, \ldots, n - r \]

Then \(p_r(t) \) is the point with parameter value \(t \) on the Bézier curve defined by the \(p_i \)’s

The de Casteljau Algorithm: Example Results

- Quartic curve (degree 4)
- 50 points computed on the curve
 - black points
- All intermediate control points shown
 - gray points
The de Casteljau Algorithm: Example Results

- A degree 6 curve
- 60 points computed on the curve
 - the black points
- Intermediate control points
 - the gray points

De Casteljau: Arc Segment Animation
De Casteljau: Cubic Curve Animation

The de Casteljau Algorithm: Some Observations

- Interpolation along the curve is based only on u
- Drawing the curve’s pixels requires iterating over u at sufficient refinement
- What is the right increment?
- It’s not constant!

Subdivision

- Common in many areas of graphics, CAD, CAGD, vision
- Basic idea
 - primitives defined by control polygons
 - set of control points is not unique
 - more than one way to compute a curve
 - subdivision refines representation of an object by introducing more control points
- Allows for local modification
- Subdivide to pixel resolution
Bézier Curve Subdivision

- Subdivision allows display of curves at different/adaptive levels of resolution
- Rendering systems (OpenGL, ActiveX, etc) only display polygons or lines
- Subdivision generates the lines/facets that approximate the curve/surface
 - output of subdivision sent to renderer

Bézier Curve Subdivision, with de Casteljau

- Calculate the value of \(x(u) \) at \(u = 1/2 \)
- This creates a new control point for subdividing the curve
- Use the two new edges to form control polygon for two new Bézier curves

Drawing Parametric Curves

Two basic ways:
- **Iterative evaluation** of \(x(t), y(t), z(t) \) for incrementally spaced values of \(t \)
 - can’t easily control segment lengths and error
- **Recursive Subdivision** via de Casteljau, that stops when control points get sufficiently close to the curve
 - i.e. when the curve is nearly a straight line
- Use Bresenham to draw each line segment

FYI: Computing the Distance from a Point to a Line

- Line is defined with two points
- Basic idea:
 - Project point \(P \) onto the line
 - Find the location of the projection
 - \(d(P, L) = \frac{(y_0 - y_P)x + (x_0 - x_P)y + (x_0y_P - x_Py_0)}{\sqrt{(x_1 - x_0)^2 + (y_1 - y_0)^2}} \)
Drawing Parametric Curves via Recursive Subdivision

The Algorithm:
- DrawCurveRecSub(curve,e)
 - If straight(curve,e) then DrawLine(curve)
 - Else
 - SubdivideCurve(curve,LeftCurve,RightCurve)
 - DrawCurveRecSub(LeftCurve,e)
 - DrawCurveRecSub(RightCurve,e)

Subdivision: Wave Curve

Bézier Curve: Degree Elevation
- Given a control polygon
- Generate additional control points
- Keep the curve the same
- In the limit, this converges to the curve defined by the original control polygon

Bezier Curve Drawing
- Given control points you can either …
 - Iterate through t and evaluate formula
 - Iterate through t and use de Casteljau Algorithm
 - Successive interpolation of control polygon edges
 - Recursively subdivide de Casteljau polygons until they are approximately flat
 - Generate more control points with degree elevation until control polygon approximates curve