CS 430
Computer Graphics

Curve Drawing Algorithms
Week 4, Lecture 8
David Breen, William Regli and Maxim Peysakhov
Department of Computer Science
Drexel University

Outline
- Drawing of 2D Curves
 - De Casteljau algorithm
 - Subdivision algorithm
 - Drawing parametric curves

The de Casteljau Algorithm
- How to compute a sequence of points that approximates a smooth curve given a set of control points?
- Developed by Paul de Casteljau at Citroën in the late 1950s
- Idea: recursively subdivide the curve and add points to refine the number of control points

Recall: Linear Interpolation
- Simple example
 - interpolating along the line between two points
 - (really an affine combination of points a and b)
 - \(x(t) = a + (b-a)t \)

Properties of Piecewise Linear Interpolations
- Given
 - continuous curve, C
 - piecewise linear interpolant (PLI) of C
 - and an arbitrary plane, P
- Then:
 The number of crossings of P by PLI is no greater than those of C

Linear Interpolation: Example 1
- Constructing a parabola using three control points
- From analytic geometry
 \[\text{ratio}(u, v, w) = (v-u)/(w-u) \]
 \[\text{ratio}(b_n, b'_n, b'_1) = \text{ratio}(b'_1, b'_n, b'_1) = \text{ratio}(b'_1, b'_n, b'_1) = t \]
The de Casteljau Algorithm

Basic case, with two points:

• Plotting a curve via repeated linear interpolation
 – Given \(P_0, P_1, \ldots \) a sequence of control points
 – Simple case: Mapping a parameter \(u \) to the line \(P_0 P_1 \)
 \[p(u) = (1 - u)P_0 + uP_1 \]

The de Casteljau Algorithm

• Generalizing to three points
 – Interpolate along the resulting points
 \[p_0(u) = (1 - u)P_0 + uP_1 \]
 \[p_1(u) = (1 - u)P_1 + uP_2 \]

The de Casteljau Algorithm

• The complete solution from the algorithm for three iterations:

\[
\begin{align*}
p_0(u) &= (1 - u)P_0 + uP_1 \\
p_1(u) &= (1 - u)P_1 + uP_2 \\
p(u) &= (1 - u)p_0(u) + up_1(u)
\end{align*}
\]

The de Casteljau Algorithm

• Input: \(p_0, p_1, \ldots, p_n \in R^3, t \in R \)
 • Iteratively set:
 \[p_r(t) = (1 - t)p_{r-1}(t) + tp_{r+1}(t) \]
 \[p_r(t) = p_t \]
 Then \(p_r(t) \) is the point with parameter value \(t \) on the Bézier curve defined by the \(p_i \)’s

The de Casteljau Algorithm: Example Results

• Quartic curve (degree 4)
• 50 points computed on the curve
 – black points
• All intermediate control points shown
 – gray points
The de Casteljau Algorithm: Example Results

- A degree 6 curve
- 60 points computed on the curve
 - the black points
- Intermediate control points
 - the gray points

De Casteljau: Arc Segment Animation

De Casteljau: Cubic Curve Animation

De Casteljau: Loop Curve Animation

The de Casteljau Algorithm: Some Observations

- Interpolation along the curve is based only on u
- Drawing the curve’s pixels requires iterating over u at sufficient refinement
- What is the right increment?
- It’s not constant!

Subdivision

- Common in many areas of graphics, CAD, CAGD, vision
- Basic idea
 - primitives defined by control polygons
 - set of control points is not unique
 - more than one way to compute a curve
 - subdivision refines representation of an object by introducing more control points
- Allows for local modification
- Subdivide to pixel resolution
Bézier Curve Subdivision

- Subdivision allows display of curves at
different/adaptive levels of resolution
- Rendering systems (OpenGL, ActiveX,
 etc) only display polygons or lines
- Subdivision generates the lines/facets
 that approximate the curve/surface
 – output of subdivision sent to renderer

Bézier Curve Subdivision, with de Casteljau

- Calculate the value of
 \(x(u) \) at \(u = 1/2 \)
- This creates a new
 control point for
 subdividing the curve
- Use the two new
 edges to form control
 polygon for two new
 Bézier curves

Bézier Curve Subdivision

- Observe subdivision:
 – does not affect the shape of the curve
 – partitions one curve into several curved pieces
 with (collectively) the same shape

Drawing Parametric Curves

Two basic ways:
- Iterative evaluation of \(x(t), y(t), z(t) \)
 for incrementally spaced values of \(t \)
 – can’t easily control segment lengths and error
- Recursive Subdivision
 via de Casteljau, that stops when control points
 get sufficiently close to the curve
 – i.e. when the curve is nearly a straight line
- Use Bresenham to draw each line segment

Drawing Parametric Curves via Recursive Subdivision

- Idea: stop subdivision when segment is
 flat enough to be drawn w/ straight line
- Curve Flatness Test:
 – based on the convex hull
 – if \(d_2 \) and \(d_3 \) are both less
 than some \(e \)
 then the curve is declared flat

FYI: Computing the Distance
from a Point to a Line

- Line is defined with two points
- Basic idea:
 – Project point \(P \) onto
 the line
 – Find the location of the
 projection
 \[
 d(P,L) = \frac{(y_0 - y_1) x + (x_0 - x_1) y + (x_1 y_0 - x_0 y_1)}{\sqrt{(x_1 - x_0)^2 + (y_1 - y_0)^2}}
 \]
Drawing Parametric Curves via Recursive Subdivision

The Algorithm:

• DrawCurveRecSub(curve, e)
 – If straight(curve, e) then DrawLine(curve)
 – Else
 • SubdivideCurve(curve, LeftCurve, RightCurve)
 • DrawCurveRecSub(LeftCurve, e)
 • DrawCurveRecSub(RightCurve, e)

Subdivision: Wave Curve

Bézier Curve: Degree Elevation

• Given a control polygon
• Generate additional control points
• Keep the curve the same
• In the limit, this converges to the curve defined by the original control polygon

Bezier Curve Drawing

• Given control points you can either …
 – Iterate through t and evaluate formula
 – Iterate through t and use de Casteljau Algorithm
 • Successive interpolation of control polygon edges
 – Recursively subdivide de Casteljau polygons until they are approximately flat
 – Generate more control points with degree elevation until control polygon approximates curve