CS 430
Computer Graphics

B-Splines and NURBS

Week 5, Lecture 9

David Breen, William Regli and Maxim Peysakhov
Department of Computer Science
Drexel University

Outline

• Types of Curves
 – Splines
 – B-splines
 – NURBS
• Knot sequences
• Effects of the weights

Splines

• Popularized in late 1960s in US Auto industry (GM)
 – R. Riesenfeld (1972)
 – W. Gordon
• Origin: the thin wood or metal strips used in building/ship construction
• Goal: define a curve as a set of piecewise simple polynomial functions connected together

Natural Splines

• Mathematical representation of physical splines
• C^2 continuous
• Interpolate all control points
• Have Global control (no local control)

B-splines: Basic Ideas

• Similar to Bézier curves
 – Smooth blending function times control points
• But:
 – Blending functions are non-zero over only a small part of the parameter range (giving us local support)
 – When nonzero, they are the “concatenation” of smooth polynomials. (They are piecewise!)

B-spline: Benefits

• User defines degree
 – Independent of the number of control points
• Produces a single piecewise curve of a particular degree
 – No need to stitch together separate curves at junction points
• Continuity comes for free!
B-splines

- Defined similarly to Bézier curves
 - \(p_i \) are the control points
 - Computed with basis functions (Basis-splines)
 - B-spline basis functions are blending functions
 - Each point on the curve is defined by the blending of the control points
 \(B_i \) is the \(i \)-th B-spline blending function

\[
p(t) = \sum_{i=0}^{m} B_{i,d}(t) p_i
\]

- \(B_i \) is zero for most values of \(t \)

B-spline Blending Functions

\(B_{k,0}(t) \) is a step function that is 1 in the interval
\(B_{k,1}(t) \) spans two intervals and is a piecewise linear function that goes from 0 to 1 (and back)
\(B_{k,2}(t) \) spans three intervals and is a piecewise quadratic that grows from 0 to 1/4, then up to 3/4 in the middle of the second interval, back to 1/4, and back to 0
\(B_{k,3}(t) \) is a cubic that spans four intervals growing from 0 to 1/6 to 2/3, then back to 1/6 and to 0

B-spline: Cox-deBoor Recursion

- Cox-deBoor Algorithm: defines the blending functions for spline curves (not limited to deg 3)
 - curves are weighted avgs of lower degree curves
- Let \(B_{i,d}(t) \) denote the \(i \)-th blending function for a B-spline of degree \(d \), then:

\[
B_{i,d}(t) = \begin{cases}
1 & \text{if } t_k \leq t < t_{k+1} \\
0 & \text{otherwise}
\end{cases}
\]

\[
B_{i,d}(t) = \frac{t - t_k}{t_{k+d} - t_k} B_{i,d-1}(t) + \frac{t_{k+d} - t}{t_{k+d} - t_{k+1}} B_{i+1,d-1}(t)
\]

B-spline Blending Functions: Example for 2\(^{nd}\) Degree Splines

- Note: can’t define a polynomial with these properties (both 0 and non-zero for ranges)
- Idea: subdivide the parameter space into intervals and build a piecewise polynomial
 - Each interval gets different polynomial function

Transitions at Knots

- As one blending function goes to zero, another smoothly becomes non-zero
Example: Creating a B-spline Curve Segment

Uniform B-splines: Setting the Options

• Specified by
 - \(m+1 \) control points, \(P_0 \ldots P_m \)
 - \(m+1 \) control points, \(P_0 \ldots P_m \)
 - \(m \) cubic polynomial curve segments, \(Q_0 \ldots Q_m \)
 - \(m-1 \) knot points, \(t_2 \ldots t_{m+1} \)
 - segments \(Q_i \) of the B-spline curve are
 • defined over a knot interval \([t_i, t_{i+1}]\)
 • defined by 4 of the control points, \(P_{i-3} \ldots P_i \)
 - segments \(Q_i \) of the B-spline curve are blended together into smooth transitions via (the new & improved) blending functions

B-splines: Knot Selection

• Instead of working with the parameter space \(0 \leq t \leq 1 \), use \(t_{min} \leq t \leq t_{max} \)
• The knot points
 – joint points between curve segments, \(Q_i \)
 – Each has a knot value
 – \(m-1 \) knots for \(m+1 \) points

Example: Creating a B-spline

\(p(t) = \sum_{i=0}^{m} B_{i,d}(t) P_i \)

- \(m = 9 \)
- 10 control points
- 8 knot points
- 7 segments

B-spline: Knot Sequences

• Even distribution of knots
 – uniform B-splines
 – Curve does not interpolate end points
 • first blending function not equal to 1 at \(t=0 \)
• Uneven distribution of knots
 – non-uniform B-splines
 – Allows us to tie down the endpoints by repeating knot values
 (in Cox-deBoor, \(0/0=0 \))
 – If a knot value is repeated, it increases the effect (weight) of the blending function at that point
 – If knot is repeated \(d \) times, blending function converges to 1 and the curve interpolates the control point

B-splines: Cox-deBoor Recursion

• Cox-deBoor Algorithm: defines the blending functions for spline curves (not limited to deg 3)
 – curves are weighted avgs of lower degree curves
• Let \(B_{i,d}(t) \) denote the \(i \)-th blending function for a B-spline of degree \(d \), then:

\[
B_{i,d}(t) = \begin{cases}
1, & \text{if } t_{i} < t < t_{i+1} \\
0, & \text{otherwise}
\end{cases}
\]

\[
B_{i,d}(t) = \begin{cases}
\frac{t-t_{i}}{t_{i+d}-t_{i}} B_{i,d+1}(t) + \frac{t_{i+d+1}-t}{t_{i+1}-t_{i+1}} B_{i+1,d+1}(t), & \text{if } t_{i} < t < t_{i+1} \\
0, & \text{otherwise}
\end{cases}
\]
Creating a Non-Uniform B-spline: Knot Selection

- Given curve of degree $d=3$, with $m+1$ control points p_0, \ldots, p_m
 - first, create $m+d$ knot values
 - use knot values $(0, 0, 0, 1, 2, \ldots, m-2, m-1, m-1, m-1)$ (adding two extra 0's and $m-1$'s)
 - Note
 - Causes Cox-deBoor to give added weight in blending to the first and last points when t is near t_{min} and t_{max}

B-splines: Multiple Knots

- Knot Vector $(0.0, 0.0, 3.0, 4.0, 5.0, 6.0, 7.0)$
- Several consecutive knots get the same value
- Changes the basis functions!

B-spline Summary

$p(t) = \sum_{j=0}^{m} B_{i,j}(t) p_j$

Watching Effects of Knot Selection

- 9 knot points (initially)
 - Note: knots are distributed parametrically based on t, hence why they "move"
- 10 control points
- Curves have as many segments as they have non-zero intervals in u

B-splines: Local Control Property

- Local Control
 - polynomial coefficients depend on a few points
 - moving control point (p_4) affects only local curve
 - Why: Based on curve def'n, affected region extends at most 2 knot points away

B-splines: Local Control Property

- Knot
- Control point $x(t)$
B-splines: Convex Hull Property

- The effect of multiple control points on a uniform B-spline curve

B-splines: Continuity

- Derivatives are easy for cubics

 \[p(u) = \sum c_k u^k \]

- Derivative:

 \[p'(u) = c_1 + 2c_2 u + 3c_3 u^2 \]

 Easy to show \(C^0, C^1, C^2 \)

B-splines: Setting the Options

- How to space the knot points?
 - Uniform
 - equal spacing of knots along the curve
 - Non-Uniform

- Which type of parametric function?
 - Rational
 - \(x(t), y(t), z(t) \) defined as ratio of cubic polynomials
 - Non-Rational

NURBS

- At the core of several modern CAD systems
 - I-DEAS, Pro/E, Alpha_1
- Describes analytic and freeform shapes
- Accurate and efficient evaluation algorithms
- Invariant under affine and perspective transformations

Benefits of Rational Spline Curves

- Invariant under rotation, scale, translation, perspective transformations
 - transform just the control points, then regenerate the curve
 - (non-rationals only invariant under rotation, scale and translation)
- Can precisely define the conic sections and other analytic functions
 - conics require quadratic polynomials
 - conics only approximate with non-rationals

NURBS

Non-uniform Rational B-splines: NURBS

- Basic idea: four dimensional non-uniform B-splines, followed by normalization via homogeneous coordinates
 - If \(P_i = (x, y, z, 1) \), results are invariant wrt perspective projection
- Also, recall in Cox-deBoor, knot spacing is arbitrary
 - knots are close together, influence of some control points increases
 - Duplicate knots can cause points to interpolate
 - e.g. Knots \(\{0, 0, 0, 0, 1, 1, 1, 1\} \) create a Bézier curve
Rational Functions

- Cubic curve segments
 \[x(t) = \frac{X(t)}{W(t)}, \quad y(t) = \frac{Y(t)}{W(t)}, \quad z(t) = \frac{Z(t)}{W(t)} \]
 where \(X(t), Y(t), Z(t), W(t)\) are all cubic polynomials with control points specified in homogenous coordinates, \([x, y, z, w]\)
- Note: for 2D case, \(Z(t) = 0\)

Rational Functions: Example

- Example:
 - rational function: a ratio of polynomials
 - a rational parameterization in \(u\) of a unit circle in xy-plane:
 \[x(u) = \frac{1 - u^2}{1 + u^2}, \quad y(u) = \frac{2u}{1 + u^2}, \quad z(u) = 0 \]
 - a unit circle in 3D homogeneous coordinates:
 \[x(u) = 1 - u^2, \quad y(u) = 2u, \quad z(u) = 0, \quad w(u) = 1 + u^2 \]

NURBS: Notation Alert

- Depending on the source/reference
 - Blending functions are either \(B_{i,d}(u)\) or \(N_{i,d}(u)\)
 - Parameter variable is either \(u\) or \(t\)
 - Curve is either \(C\) or \(P\) or \(Q\)
 - Control Points are either \(P_i\) or \(B_i\)
 - Variables for order, degree, number of control points etc are frustratingly inconsistent
 - \(k, i, j, m, n, p, L, d, \ldots\)

NURBS

- A \(d\)-th degree NURBS curve \(C\) is def'd as:
 \[C(u) = \frac{\sum_{i=0}^{n} w_i B_{i,d}(u) P_i}{\sum_{i=0}^{n} w_i B_{i,d}(u)} \]
 Where
 - control points, \(P_i\)
 - \(d\)-th degree B-spline blending functions, \(B_{i,d}(u)\)
 - the weight, \(w_i\), for control point \(P_i\)
 (when all \(w_i = 1\), we have a B-spline curve)

Observe: Weights Induce New Rational Basis Functions, \(R\)

- Setting:
 \[R_i(u) = \frac{w_i B_{i,d}(u)}{\sum_{j=0}^{n} w_j B_{j,d}(u)} \]
 Allows us to write:
 \[C(u) = \sum_{i=0}^{n} R_i(u) P_i \]
 Where \(R_i(u)\) are rational basis functions
 - piecewise rational basis functions on \(u \in [0, 1]\)
 - weights are incorporated into the basis fctns
Geometric Interpretation of NURBS

- With Homogeneous coordinates, a rational \(n\)-D curve is represented by polynomial curve in \((n+1)\)-D
- Homogeneous 3D control points are written as:
 \[P_i^w = w_i x_i, w_i y_i, w_i z_i, w_i \]
 in 4D where \(w \neq 0 \)
- To get \(P_i \), divide by \(w_i \)
 - a perspective transform with center at the origin
- Note: weights can allow final curve shape to go outside the convex hull (i.e. negative \(w \))

NURBS: Examples

- Unif. Knot Vector
- Non-Unif. Knot Vector

The Effects of the Weights

- \(w_i \) of \(P_i \) effects only the range \([u_i, u_{i+k+1}]\)
- If \(w_i = 0 \) then \(P_i \) does not contribute to \(C \)
- If \(w_i \) increases, point \(B \) and curve \(C \) are pulled toward \(P_i \) and pushed away from \(P_j \)
- If \(w_i \) decreases, point \(B \) and curve \(C \) are pushed away from \(P_i \) and pulled toward \(P_j \)
- If \(w_i \) approaches infinity then \(B \) approaches 1
 and \(B_i \to P_i \), if \(u \) in \([u_i, u_{i+k+1}]\)
Programming assignment 3

• Input PostScript-like file containing polygons
• Output B/W PBM
• Implement viewports
• Use Sutherland-Hodgman intersection for polygon clipping
• Implement scanline polygon filling. (You cannot use flood filling)