Outline

- Conic Sections via NURBS
- Knot insertion algorithm
- The de Boor’s algorithm
 - for B-Splines
 - for NURBS
- Oslo Algorithm
- Barycentric Coordinates
- Discussion of homework #3
Conic Sections via NURBS

• Obtained via projection of the 3D parabola onto a plane

• Note:
 – 3D Case: rational curve is a 4D object
 – 2D Case: rational curve is a 3D object
 – assign w to each control point

Conic Sections via NURBS

• Define the curve with three control points
• Weights of first/last control points are 1
• For center control point
 – $w<1$ gives an ellipse
 – $w>1$ gives a hyperbola
 – $w=1$ gives a parabola
 – Knot vector is \{0.0, 0.0, 0.0, 1.0, 1.0, 1.0\}

Conic Sections via NURBS: A Circular Arc

- The two sides of the control polygon are of equal length
- The chord connecting the first and last control points meets each leg at an angle θ equal to half the angular extent of the desired arc (for instance, 30° for a 60° arc)
- The weight of the inner control point is equal to the cosine of θ
- Knot vector is $\{0.0, 0.0, 0.0, 1.0, 1.0, 1.0\}$

Conic Sections via NURBS: A Circle

- What if we need an arc of >180°?
- Idea:
 - Use multiple 90° or 120° arcs
 - Stitch them together with knots

Example:
3 arcs of 120°

Conic Sections via NURBS

Example:
4 arcs of 90°

\[B_3 = \left\{ 1, 1, \frac{\sqrt{2}}{2} \right\} \]

\[B_2 = \{ 0, 1, 1 \} \]

\[B_1 = \left\{ 1, 1, \frac{\sqrt{2}}{2} \right\} \]

\[B_4 = \{ -1, 0, 1 \} \]

\[B_5 = \left\{ -1, 1, \frac{\sqrt{2}}{2} \right\} \]

\[B_6 = \{ 0, -1, 1 \} \]

\[B_7 = \left\{ 1, -1, \frac{\sqrt{2}}{2} \right\} \]

\[B_8 = \{ 1, 0, 1 \} \]

knots = \[\left\{ 0, 0, 0, \frac{1}{4}, \frac{1}{4}, \frac{1}{2}, \frac{1}{2}, \frac{3}{4}, \frac{3}{4}, 1, 1, 1 \right\} \]

Knot Insertion

- Issue: More control points mean more control
- How do we add more points and keep same curve?

Knot Insertion

• Basic Approach
 – Decide where we’d like to tweak the curve
 – Add a new knot
 – Find affected \(d-1 \) control points
 – Replace it with \(d \) new control points

Example:
New knot at \(u=2.6 \)

Knot Insertion

- Given: \(n+1 \) control points \((P_0, P_1, \ldots, P_n)\), a knot vector of \(m+1 \) knots \(U = \{ u_0, u1, \ldots, u_m \} \) and a degree \(d \) B-spline curve \(C(u) \).
- Insert a new knot \(t \) into the knot vector without changing the shape of the curve.
- If \(t \) lies in knot span \([u_k, u_{k+1})\), only the basis functions for \((P_k, \ldots P_{k-d})\) are non-zero.
- Find \(d \) new control points \(Q_k \) on edge \(P_{k-1}P_k \), \(Q_{k-1} \) on edge \(P_{k-2}P_{k-1} \), \ldots, and \(Q_{k-d+1} \) on edge \(P_{k-d}P_{k-d+1} \).
- All other control points are unchanged.
- Note that \(d-1 \) control points of the original control polyline are removed and replaced with \(d \) new control points.

See http://www.cs.mtu.edu/~shene/COURSES/cs3621/NOTES/spline/B-spline/single-insertion.html
Knot Insertion Algorithm

• Create new control point

\[Q_j = (1 - \Box_j)P_{j-1} + \Box_j P_j \]

• Where \(\Box \) is defined as

\[\Box_j = \frac{t \Box u_j}{u_{j+d} \Box u_j} \]

See http://www.cs.mtu.edu/~shene/COURSES/cs3621/NOTES/spline/B-spline/single-insertion.html
Properties of Knot Insertion

- Increasing the multiplicity of a knot decreases the number of non-zero basis functions at this knot.
- At a knot of multiplicity d, there will be only one non-zero basis function.
- Corresponding point on the curve $p(u)$ is affected by exactly one control point p_i.
- In fact $p(u)$ is p_i!
The de Boor Algorithm

• Generalization of de Casteljau's algorithm
• It provides a fast and numerically stable way for finding a point on a B-spline curve
• Observation: if a knot u is inserted d times to a B-spline, then $p(u)$ is the point on the curve.
• Idea: We just simply insert u d times and the last point is $p(u)$!

See http://www.cs.mtu.edu/~shene/COURSES/cs3621/NOTES/spline/B-spline/de-Boor.html
The de Boor Algorithm
De Boor’s Algorithm

If \(u \) lies in \([u_k, u_{k+1})\) and \(u \neq u_k \), let \(h = d \)
If \(u = u_k \) and \(u_k \) is a knot of multiplicity \(s \), let \(h = d - s \)
Copy the affected control points \(p_{k-s}, p_{k-s-1}, \ldots, p_{k-d+1}, p_{k-d} \)
to a new array and rename them as \(p_{k-s,0}, p_{k-s-1,0}, \ldots, p_{k-d+1,0} \)

\[
\text{for } r := 1 \text{ to } h \text{ do}
\]
\[
\text{for } i := k-d+r \text{ to } k-s \text{ do}
\]
\[
\{
\text{Let } a_{i,r} = \frac{(u - u_i)}{(u_{i+d-r+1} - u_i)}
\text{Let } p_{i,r} = (1 - a_{i,r}) p_{i-1,r-1} + a_{i,r} p_{i,r-1}
\}
\]
\(p_{k-s,d-s} \) is the point \(p(u) \).

Compiled from Lecture notes of Dr. Ching-Kuang Shene @ Michigan Technological University
De Boor’s Algorithm (cont)

for \(u := 0 \) to \(u_{\text{max}} \) do
{

 \(\ldots \)

 for \(r := 1 \) to \(h \) do

 for \(i := k-p+r \) to \(k-s \) do
 {

 Let \(a_{i,r} = \frac{(u - u_i)}{(u_{i+p-r+1} - u_i)} \)

 Let \(p_{i,r} = (1 - a_{i,r}) \cdot p_{i-1,r-1} + a_{i,r} \cdot p_{i,r-1} \)
 }

 \(p_{k-s,p-s} \) is the point \(p(u) \).

}
Example of de Boor’s Algorithm

Degree 3 B-spline curve \((i.e., \ d = 3)\)
Defined by seven control points \(p_0, \ldots, p_6\)
And knot vector:

\[
\begin{array}{cccccc}
 u_0 & u_1 & u_2 & u_3 & u_4 & u_5 \\
 0 & 0.25 & 0.5 & 0.75 & 1 & \\
\end{array}
\]

\(u = 0.4\)

\[a_{4,1} = \frac{u - u_4}{u_{4+3} - u_4} = 0.2\]
\[a_{3,1} = \frac{u - u_3}{u_{3+3} - u_3} = \frac{8}{15} = 0.53\]
\[a_{2,1} = \frac{u - u_2}{u_{2+3} - u_2} = 0.8\]
\[p_{4,1} = (1 - a_{4,1})p_{3,0} + a_{4,1}p_{4,0} = 0.8p_{3,0} + 0.2p_{4,0}\]
\[p_{3,1} = (1 - a_{3,1})p_{2,0} + a_{3,1}p_{3,0} = 0.47p_{2,0} + 0.53p_{3,0}\]
\[p_{2,1} = (1 - a_{2,1})p_{1,0} + a_{2,1}p_{2,0} = 0.2p_{1,0} + 0.8p_{2,0}\]

\[a_{4,2} = \frac{u - u_4}{u_{4+3-1} - u_4} = 0.3\]
\[a_{3,2} = \frac{u - u_3}{u_{3+3-1} - u_3} = 0.8\]
\[p_{4,2} = (1 - a_{4,2})p_{3,1} + a_{4,2}p_{4,1} = 0.7p_{3,1} + 0.3p_{4,1}\]
\[p_{3,2} = (1 - a_{3,2})p_{2,1} + a_{3,2}p_{3,1} = 0.2p_{2,1} + 0.8p_{3,1}\]

\[a_{4,3} = \frac{u - u_4}{u_{4+3-2} - u_4} = 0.6\]
\[p_{4,3} = (1 - a_{4,3})p_{3,2} + a_{4,3}p_{4,2} = 0.4p_{3,2} + 0.6p_{4,2}\]
Similar but Different

De Casteljau's:
- Dividing points are computed with a pair of numbers \((1 - u)\) and \(u\) that never change
- Can be used for curve subdivision
- Uses all control points

De Boor's
- These pairs of numbers are different and depend on the column number and control point number
- Intermediate control points are not sufficient
- \(d+1\) affected control points are involved in the computation

Compiled from Lecture notes of Dr. Ching-Kuang Shene @ Michigan Technological University
De Boor’s: Curves

Animated by Max Peysakhov @ Drexel University
Oslo Algorithm

• A subdivision algorithm for B-splines, the basic idea:
• Take the curve with \(m+1 \) control points \(P_0 \) to \(P_m \)
• Insert a knot in any point (0.5 maybe?)
• As a result you will have 2 new points \(P_k' \) and \(P_k'' \)
• Take curves with \(m+1 \) control points \(P_0 \ldots P_k', \ P_k'' \ldots P_m \) and \(P_1 \ldots P_k', \ P_k'' \ldots P_m \)
• Apply procedure recursively on each part
Oslo Algorithm
Barycentric Coordinates

• By Ceva's Theorem:
 – For any point K inside the triangle ABC
 – Consider the existence of masses w_A, w_B, and w_C, placed at the vertices of the triangle
 – Their center of gravity (barycenter) will coincide with the point K.

• August Ferdinand Moebius (1790-1868) defined (1827) w_A, w_B, and w_C as the barycentric coordinates of K

• $K = w_AA + w_BB + w_CC$

http://www.cut-the-knot.org/triangle/barycenter.shtml
Properties of Barycentric Coordinates

• Not unique
• Can be generalized to negative masses
• Can be made unique by setting
 \[w_A + w_B + w_C = 1 \]

• \(w_A = 0 \) for points on BC
• \(w_B = 0 \) for points on AC
• \(w_C = 0 \) on AB
Given P, how can we compute α, β, γ?

- Compute the areas of the opposite subtriangle
 - Ratio with complete area
 $$\alpha = A_a / A, \quad \beta = A_b / A, \quad \gamma = A_c / A$$

Use signed areas for points outside the triangle

Area Ta:
$$|(b-P) \times (c-P)| / 2$$
Calculating the Weights

- Given vertices A, B, C and Centroid K
- What are the weights, w_A, w_B, w_C?

\[
x_K = w_A x_A + w_B x_B + w_C x_C
\]
\[
y_K = w_A y_A + w_B y_B + w_C y_C
\]

- Substitute $w_C = 1 - w_A - w_B$

\[
x_K = w_A x_A + w_B x_B + (1 - w_A - w_B) x_C
\]
\[
y_K = w_A y_A + w_B y_B + (1 - w_A - w_B) y_C
\]
Calculating Weights (cont.)

- Solve for w_A and w_B

$$w_A = \frac{(x_B - x_C)(y_C - y_K)(x_K - x_B)(y_B - y_C)}{(x_A - x_C)(y_B - y_C)(x_B - x_C)(y_A - y_C)}$$

$$w_B = \frac{(x_A - x_C)(y_C - y_K)(x_C - x_K)(y_B - y_C)}{(x_B - x_C)(y_A - y_C)(x_A - x_C)(y_B - y_C)}$$

- $w_C = 1 - w_A - w_B$
Onto…

- Bézier Surfaces
- B-spline Surfaces
- NURBS Surfaces
- Faceting, Subdivision, Tessellation
- 3D Objects
Programming assignment 3

• Input PostScript-like file containing polygons
• Output B/W XPM
• Implement viewports
• Use Sutherland-Hodgman intersection for polygon clipping
• Implement scanline polygon filling. (*You can not use flood filling algorithms*)