CS 430/536
Computer Graphics I

3D Viewing
Week 6, Lecture 12

David Breen, William Regli and Maxim Peysakhov
Geometric and Intelligent Computing Laboratory
Department of Computer Science
Drexel University
http://gicl.cs.drexel.edu
Overview

• 3D Viewing
• 3D Projective Geometry
• Mapping 3D worlds to 2D screens
• Introduction and discussion of homework #4

Lecture Credits: Most pictures are from Foley/VanDam; Additional and extensive thanks also goes to those credited on individual slides
Recall the 2D Problem

• Objects exist in a 2D WCS
• Objects clipped/transformed to viewport
• Viewport transformed and drawn on 2D screen
From 3D Virtual World to 2D Screen

• Not unlike The Allegory of the Cave (Plato’s “Republic”, Book VII)
• Viewers see a 2D shadow of 3D world
• How do we create this shadow?
• How do we make it as realistic as possible?
History of Linear Perspective

• Renaissance artists
 – Alberti (1435)
 – Della Francesca (1470)
 – Da Vinci (1490)
 – Pélerin (1505)
 – Dürer (1525)

Dürer: Measurement Instruction with Compass and Straight Edge

The 3D Problem: Using a Synthetic Camera

- Think of 3D viewing as taking a photo:
 - Select *Projection*
 - Specify *viewing parameters*
 - *Clip* objects in 3D
 - *Project* the results onto the display and draw
The 3D Problem: (Slightly) Alternate Approach

- Think of 3D viewing as taking a photo:
 - Select *Projection*
 - Specify *viewing parameters*
 - Perform trivial *accept/reject test* in 3D
 - *Project* the results onto the image plane
 - *Clip* lines to world window
 - Transform to viewport and draw
Creating a 3D View: Parameterizing the Camera

Basic Ideas:

• Camera has
 – location
 – lens (focal length)
 – projection type

• World has
 – lights
 – colors
 – objects (visible and hidden surfaces)
Planar Geometric Projections

- Projections onto Planes
 - Consider the line AB
- Perspective Projection
 - a single viewing location
 - similar to a photograph
- Parallel Projection
 - viewing location at ∞
 - good for capturing shape and dimensions
Perspective Projections

- Idea: lines not parallel to projection plane converge to a *vanishing point* (VP)
- Lines extending to axis VPs are parallel to either x, y or z axes
- Projections characterized by # of axes cut by the projection plane
Perspective Projections: Example

- One-point perspective
- z axis vanishing point
- Projection plane cuts only the z axis
Perspective Projection (Titanic)
Perspective Projections: Example

- Two-point perspective, cutting x and z
- Used commonly in CAD
- Three-point projections are not much different
Parallel Projections

- Two types, depending on *projection direction vector* and *projection plane normal*
- Orthographic Projections
 - both vectors are the same
 - front-, top-, plan-, and side-elevation projections
- Oblique Projections
 - vectors are different
Mercury Spacecraft
Axonometric Orthographic Projections

- Projections to planes not normal to principle coordinate axes, i.e. showing several faces
- The *Isometric* Projection
 - very common
 - projection plane at equal angles to each of the coordinate axes
 - 8 of them, one in each octant
Mercury Spacecraft

THREE AXIS HAND CONTROL

Palm Pivot

Wrist Pivot
Oblique Projections

- Projection direction and Projection plane normal differ
- Preserves certain angles and distances
- Good for use in illustration and measurement
Oblique Projections

- Cavalier - all lines (including receding lines) are made to their true length

- Cabinet - receding lines are shortened by one-half their true length to approximate perspective foreshortening
Oblique Projections are Good for Illustrations
Projection Relationships

- As the distance to the projection point moves toward infinity, the two projection families unify:
 - Projection plane
 - Direction to center of projection
 - Distance to CoP
Specification of 3D Views

- Projection Plane == View Plane
 - defined as a view reference point (VRP) and a view plane normal (VPN)
 - View up vector (VUP) defines “up” on the plane (so we can orient axes on to the plane)
Specification of 3D Views

• View plane window min/max are specified wrt viewing reference coordinates (VRC)
 – axis 1 (of VRC): VPN (the n axis)
 – axis 2: VUP projected onto view plane (v axis)
 – axis 3: perpendicular to n & v, for RH CS (u axis)
 – CW: center of window
Aiming the Projection

- Defined by:
 - Projection Reference Point (PRP)
 - Projection type
 - PRP is defined in with View Reference Coordinates (VRC)
 - Result: a semi-infinite viewing pyramid or view parallelepiped

- Perspective
 - CoP = PRP

- Parallel
 - DoP = CW - PRP
Defining the View Volume

- What portion of the world do we view?
 - where do we start?
 - how far back to go?
- View Volume
 - front clipping plane
 - back clipping plane
- For perspective, things far away gets smaller
From View Volume to Screen

- Consider a unit cube in *normalized projection coordinates (NPC)*
- Transform view volume to a rectangular solid in NPC
 - z_{max} plane: front clip plane
 - z_{min} plane: back clip plane
 - etc. for x and y
 - this is the **3D Viewport**
- Transformation via the View Mapping Matrix
 - The $z=1$ face is mapped to the display
 - Display by discarding the z coordinate and drawing as in 2D
Parameter Summary

• Viewing Parameters:
 – VRP (WC)
 – VPN (WC)
 – VUP (WC)
 – PRP (VRC)
 – \(\{u,v\}_{\text{min}}, \{u,v\}_{\text{max}} \)
 – CW (VRC)
 – F & B (VRC)
 – projection type

• What the parameters mean:
 – View Reference Point
 – View Plane Normal
 – View Up Vector
 – Projection Reference Point
 – Window extent
 – Center of Window
 – Front and Back clipping planes
 – perspective/parallel
Parameterizing Projections

- Viewing Parameters:
 - VRP (WC)
 - VPN (WC)
 - VUP (WC)
 - PRP (VRC)
 - window (VRC)
 - projection type

- What the parameters mean:
 - View Reference Point
 - View Plane Normal
 - View Up Vector
 - Projection Reference Point
 - Size of the 2D window
 - perspective/parallel

the film
hold camera
aim
Zoom
Examples of 3D Viewing: Preliminaries

- Dimensions and location of a simple house
- Two-point perspective projection of the house
Examples of 3D Viewing: Preliminaries

- Default viewing specification
 - x,y,z coincides with u,v,n
 - Window bounds from 0 to 1
Examples of 3D Viewing: Preliminaries

- Default parallel projection view volume
 - cuboidal
Examples of 3D Viewing: Preliminaries

- Default perspective projection view volume
 - pyramid-like
Parameterizing Projections: Example

- Viewing Parameters:
 - VRP(WC) (0,0,0)
 - VPN(WC) (0,0,1)
 - VUP(WC) (0,1,0)
 - PRP(VRC) (.5,.5,1.0)
 - window(VRC) (0,1,0,1)
 - projection parallel
 - DOP(VRC) (0,0,-1)
Perspective Projections: Example

- Parameters:
 - VRP(WC) (0,0,0)
 - VPN(WC) (0,0,1)
 - VUP(WC) (0,1,0)
 - PRP(VRC) (8,6,84)
 - window(VRC) (-50,50,-50,50)
 - projection perspective
Perspective Projections: Example (centering)

- Parameters:
 - VRP(WC) $(0,0,54)$
 - VPN(WC) $(0,0,1)$
 - VUP(WC) $(0,1,0)$
 - PRP(VRC) $(8,6,30)$
 - window(VRC) $(-1,17,-1,17)$
 - projection perspective
Perspective Projections: Example (centering 2)

- Parameters:
 - VRP(WC) (8,6,54)
 - VPN(WC) (0,0,1)
 - VUP(WC) (0,1,0)
 - PRP(VRC) (0,0,30)
 - window(VRC) (-9,9,-7,11)
 - projection perspective
Finite View Volumes: Example

- Parameters:
 - VRP(WC) (0,0,54)
 - VPN(WC) (0,0,1)
 - VUP(WC) (0,1,0)
 - PRP(VRC) (8,6,30)
 - window(VRC) (-1,17,-1,17)
 - projection perspective
 - F(VRC) +1
 - B(VRC) -23
Perspective Projections: Example

- Parameters:
 - VRP(WC) (16,0,54)
 - VPN(WC) (0,0,1)
 - VUP(WC) (0,1,0)
 - PRP(VRC) (20,25,20)
 - window(VRC) (-20,20,-5,35)
 - projection perspective
Perspective Projections: Example

- Parameters:
 - VRP(WC) (16,0,54)
 - VPN(WC) (1,0,1)
 - VUP(WC) (0,1,0)
 - PRP(VRC) (0,25, 20\sqrt{2})
 - window(VRC) (-20,20,-5,35)
 - projection perspective
Perspective Projections: Example (cont.)

- Showing the object relative to the view plane, w/ overhead view
Perspective Projections: Example (rotating VUP)

- Same parameters as before
- VUP rotated away from y by 10°
Parallel Projections: Example

- Parameters:
 - VRP(WC) (0,0,0)
 - VPN(WC) (0,0,1)
 - VUP(WC) (0,1,0)
 - PRP(VRC) (8,8,100)
 - window(VRC) (-1,17,-1,17)
 - projection parallel
Programming assignment 4

- Read SMF file
- Implement parallel projection
- Implement perspective projection
- Output projected and clipped polygon edges