Simple Mesh Format (SMF)

- Michael Garland
 http://graphics.cs.uiuc.edu/~garland/
- Triangle data
 - Vertex indices begin at 1

3D Clipping

- Cohen-Sutherland and Cyrus-Beck can be trivially extended to 3D
- We will cover:
 - Cohen-Sutherland for 3D, (parallel projection)
 - Cohen-Sutherland for 3D, (perspective projection)

Recall: Cohen-Sutherland

- Line is completely visible iff both code values of endpoints are 0, i.e. $C_0 \lor C_1 = 0$
- If line segments are completely outside the window, then $C_0 \land C_1 \neq 0$

Cohen-Sutherland for 3D, Parallel Projection

- Use 6 bits
- Trivially accept if all end-codes are 0
- Trivially reject if bit-by-bit AND of end-codes is not 0
- Up to 6 intersections may have to be computed

Cohen-Sutherland for 3D computing intersection points.

- Use parametric representation of the line to compute intersections
- So for $y=1$ replace y with 1 and solve for t
- If $1 \geq t \geq 0$ use it to find x and z
- Test if x and z are in valid range
- Repeat for planes $y=-1$, $x=1$, $x=-1$, $z=-1$, $z=0$
Cohen-Sutherland for 3D, Perspective Projection

- Use 6 bits identical to parallel view volume clipping
- Conditions on the codes are different
- Trivially accept/reject lines using same roles
- Intersection points computed differently

<table>
<thead>
<tr>
<th>Bit</th>
<th>Description</th>
<th>Condition</th>
</tr>
</thead>
<tbody>
<tr>
<td>1</td>
<td>point ABOVE the view volume</td>
<td>(y > -z)</td>
</tr>
<tr>
<td>2</td>
<td>point BELOW the view volume</td>
<td>(y < z)</td>
</tr>
<tr>
<td>3</td>
<td>point RIGHT OF the view volume</td>
<td>(x > -z)</td>
</tr>
<tr>
<td>4</td>
<td>point LEFT OF the view volume</td>
<td>(x < z)</td>
</tr>
<tr>
<td>5</td>
<td>point BEHIND the view volume</td>
<td>(z < -1)</td>
</tr>
<tr>
<td>6</td>
<td>point IN FRONT the view volume</td>
<td>(z > z_{\text{min}})</td>
</tr>
</tbody>
</table>

“3D Clipping” for HWs 4 & 5

- Only do trivial reject test
- For HW4 just do X and Y tests
- ‘AND’ all vertex bit codes for a polygon
- If result \(!= 0\), then reject polygon
 - i.e. remove from projection pipeline

More Efficient Alternative?

- Use 3D Cohen-Sutherland to do trivial reject
- Project remaining polygons onto view plane
- Clip polygons in 2D
- Remember that user-defined window is redefined for canonical view volumes!

Overview

- 3D model representations
- Mesh formats
- Bicubic surfaces
- Bezier surfaces
- Normals to surfaces
- Direct surface rendering
3D Modeling

- 3D Representations
 - Wireframe models
 - Surface Models
 - Solid Models
 - Meshes and Polygon soups
 - Voxel/Volume models
 - Decomposition-based
 - Octrees, voxels
- Modeling in 3D
 - Constructive Solid Geometry (CSG), B-reps and feature-based

Representing 3D Objects

- Exact
 - Wireframe
 - Parametric Surface
 - Solid Model
 - CSG
 - BRep
 - Implicit Solid Modeling
- Approximate
 - Facet / Mesh
 - Just surfaces
 - Voxel
 - Volume info

Negatives when Representing 3D Objects

- Exact
 - Complex data structures
 - Expensive algorithms
 - Wide variety of formats, each with subtle nuances
 - Hard to acquire data
 - Translation required for rendering
- Approximate
 - Lossy
 - Data structure sizes can get HUGE, if you want good fidelity
 - Easy to break (i.e. cracks can appear)
 - Not good for certain applications
 - Lots of interpolation and guess work

Positives when Representing 3D Objects

- Exact
 - Precision
 - Simulation, modeling, etc.
 - Lots of modeling environments
 - Physical properties
 - High-level control
 - Many applications (tool path generation, motion, etc.)
 - Compact
- Approximate
 - Easy to implement
 - Easy to acquire
 - 3D scanner, CT
 - Easy to render
 - Direct mapping to the graphics pipeline
 - Lots of algorithms

Exact Representations

- Wireframe
- Parametric Surface
- Solid Model
 - operations
 - CSG, BRep, implicit geometry
Wireframes

• Basic idea:
 – Represent the model as the set of all of its edges

• Example:
 A simple cube
 – 12 lines
 – 8 vertices

• How about the faces?

Issues with Wireframes

• Visually ambiguous
 • No surfaces!
 – What’s inside? What’s outside?
 – Hidden line removal?

• What does validity entail?
 – Don’t we just have a bunch of wires?
 – Do they need to add up to something?

• How to model wireframe shapes?
 – Wire by wire? Not very easy!

Surface Models

• Basic idea:
 – Represent a model as a set of faces/patches

• Limitations:
 – Topological integrity; how do faces “line up”; which way is ‘inside’ / ‘outside’?

• Used in many CAD applications
 – Why? They are fine for drafting and rendering, not as good for creating true physical models

3D Mesh File Formats

Some common formats

• STL
• SMF
• OpenInventor
• VRML
• X3D

Minimal

• Vertex + Face

• No colors, normals, or texture

• Primarily used to demonstrate geometry algorithms

Full-Featured

• Colors / Transparency
• Vertex-Face Normals (optional, can be computed)
• Scene Graph
• Lights
• Textures
• Views and Navigation
Simple Mesh Format (SMF)

- Michael Garland
 - http://graphics.cs.uiuc.edu/~garland/
- Triangle data
- Vertex indices begin at 1
- #SMF 1.0
- #directions 5
- #faces 6
 - v 2.0 0.0 2.0
 - v 2.0 0.0 -2.0
 - v -2.0 0.0 -2.0
 - v -2.0 0.0 2.0
 - v 0.0 5.0 0.0
 - e 1 3 5
 - e 2 4 5
 - e 3 5 2
 - e 2 5 1
 - e 1 5 4
 - e 4 5 3

Stereolithography (STL)

- Triangle data + Face Normal
- The de-facto standard for rapid prototyping
- solid
- ...
- front normal 0.00 0.00 1.00
- begin loop
- vertex 2.00 2.00 0.00
- vertex -1.00 1.00 0.00
- vertex 0.00 -1.00 0.00
- endloop
- endfacet
- ...
- endobj

Open Inventor

- Developed by SGI
- Predecessor to VRML
 - Scene Graph

Virtual Reality Modeling Language (VRML)

- SGML Based
- #VRML V2.0 utf8
- #A Cylinder
- Shape
 - appearance Appearance { material Material ()
 geometry Cylinder {
 height 2.0
 radius 1.5
 }
 }

X3D

- Open standards file format and run-time architecture to represent and communicate 3D scenes and objects using XML
- Supports
 - 2D/3D graphics, programmable shaders
 - 2D/3D compositing, CAD data, Animation
 - Spatialized audio and video, User interaction
 - Navigation, Scripting, Networking, Simulation
- See www.web3d.org for more info

Issues with 3D “mesh” formats

- Easy to acquire
- Easy to render
- Harder to model with
- Error prone
 - split faces, holes, gaps, etc
BRep Data Structures

- Winged-Edge Data Structure (Weiler)
- Vertex
 - n edges
- Edge
 - 2 vertices
 - 2 faces
- Face
 - m edges

Biparametric Surfaces

- Biparametric surfaces
 - A generalization of parametric curves
 - 2 parameters: s, t (or u, v)
 - Two parametric functions

Bicubic Surfaces

- Recall the 2D curve: \(Q(s) = G \cdot M \cdot S \)
 - G: Geometry Matrix
 - M: Basis Matrix
 - S: Polynomial Terms \([s^3 \ s^2 \ s \ 1] \)
- For 3D, we allow the points in G to vary in 3D along t as well:
 \[
 Q(s, t) = \begin{bmatrix}
 G_1(t) & G_2(t) & G_3(t) & G_4(t)
 \end{bmatrix} \cdot M \cdot S
 \]

Observations About Bicubic Surfaces

- For a fixed \(t_1 \), \(Q(s, t_1) \) is a curve
- Gradually incrementing \(t_1 \) to \(t_2 \), we get a new curve
- The combination of these curves is a surface
- \(G_i(t) \) are 3D curves
Bicubic Surfaces

- Each \(G_i(t) \) is \(G_i(t) = G_i \cdot M \cdot T \), where
 \[
 G_i = \begin{bmatrix}
 g_{i1} & g_{i2} & g_{i3} & g_{i4}
 \end{bmatrix}
 \]
- Transposing \(G_i(t) \), we get
 \[
 G_i(t) = T^T \cdot M^T \cdot G_i^T
 = T^T \cdot M^T \cdot g_{i1} \begin{bmatrix}
 g_{i2} & g_{i3} & g_{i4}
 \end{bmatrix}
 \]

Bicubic Surfaces

- Substituting \(G_i(t) \) into \(Q(s) = G \cdot M \cdot S \), we get \(Q(s, t) \)
- The \(g_{it} \) etc. are the control points for the Bicubic surface patch:
 \[
 Q(s, t) = T^T \cdot M^T \cdot \begin{bmatrix}
 g_{11} & g_{21} & g_{31} & g_{41} \\
 g_{12} & g_{22} & g_{32} & g_{42} \\
 g_{13} & g_{23} & g_{33} & g_{43} \\
 g_{14} & g_{24} & g_{34} & g_{44}
 \end{bmatrix} \cdot M \cdot S
 \]

Bézier Surfaces

- Writing out \(Q(s, t) = T^T \cdot M^T \cdot G \cdot M \cdot S \) gives
 \[
 x(s, t) = T^T \cdot M^T \cdot G_X \cdot M \cdot S
 \\
y(s, t) = T^T \cdot M^T \cdot G_Y \cdot M \cdot S
 \\
z(s, t) = T^T \cdot M^T \cdot G_Z \cdot M \cdot S
 \]

Bicubic Bezier Patches

Using same data array \(P = [p_{ij}] \) as with interpolating form

\[
\tilde{p}(u, v) = \sum_{i=0}^{3} \sum_{j=0}^{3} b_i(u)b_j(v)\tilde{p}_{ij} = u^TPM^{\top}v
\]

Patch lies in convex hull

Bicubic Bézier Patches

- Expanding the summation
 \[
 \tilde{p}(u, v) = \sum_{i=0}^{3} \sum_{j=0}^{3} b_i(u)b_j(v)\tilde{p}_{ij} = b_{00}(u)b_{00}(v)\tilde{p}_{00} + b_{01}(u)b_{01}(v)\tilde{p}_{01} + b_{02}(u)b_{02}(v)\tilde{p}_{02} + b_{03}(u)b_{03}(v)\tilde{p}_{03} + b_{10}(u)b_{10}(v)\tilde{p}_{10} + etc.
 \]
Cubic Bezier Blending Functions

\[b(u) = \begin{bmatrix} (1-u)^3 \\ 3u(1-u)^2 \\ 3u^2(1-u) \\ u^3 \end{bmatrix} \]

Note that all zeros are at 0 and 1 which forces the functions to be smooth over (0,1)

Plotting Isolines

Faceting

Composite Bézier Surfaces

- \(C^0 \) and \(G^0 \) continuity can be achieved between two patches by setting the 4 boundary control points to be equal
- \(G^1 \) continuity achieved when cross-wise CPs are co-linear

Bézier Surfaces: Example

- Utah Teapot modeled by 32 Bézier Patches with \(G^1 \) continuity
Beziers Surface: Example

- Increased facet resolution
- Rendered

B-spline Surfaces

\[x(s,t) = T^T \cdot M_B^s \cdot G_M^t \cdot M_B^t \cdot S \]
\[y(s,t) = T^T \cdot M_B^s \cdot G_M^t \cdot M_B^t \cdot S \]
\[z(s,t) = T^T \cdot M_B^s \cdot G_M^t \cdot M_B^t \cdot S \]

- Representation for B-spline patches
- \(C^2 \) continuity across boundaries is automatic with B-splines

Normals to Surfaces

- Normals used for
 - Shading
 - Interference detection in robotics
 - Calculating offsets for numerically controlled machining

Computing the Normals to Surfaces

- For a bicubic surface, first, compute the \(s \) tangent vector:
 \[\frac{\partial}{\partial s} Q(s,t) \]
 \[= \frac{\partial}{\partial t} (T^T \cdot M^t \cdot G \cdot M \cdot S) \]
 \[= T^T \cdot M^t \cdot G \cdot M \cdot \frac{\partial}{\partial s} (S) \]
 \[= T^T \cdot M^t \cdot G \cdot M \cdot \left[\begin{array}{ccc} 3t^2 & 2t & 1 \\ 0 & 1 & 0 \end{array} \right] \]

- Next, compute the \(t \) tangent vector:
 \[\frac{\partial}{\partial t} Q(s,t) \]
 \[= \frac{\partial}{\partial t} (T^T \cdot M^t \cdot G \cdot M \cdot S) \]
 \[= T^T \cdot M^t \cdot G \cdot M \cdot S \]
 \[= \left[\begin{array}{ccc} 3t^2 & 2t & 1 \\ 0 & 1 & 0 \end{array} \right] \cdot T^T \cdot M^t \cdot G \cdot M \cdot S \]

- Since \(s \) and \(t \) are tangent to the surface, their cross product is the normal vector to the surface:
 \[\frac{\partial}{\partial s} Q(s,t) \times \frac{\partial}{\partial t} Q(s,t) = \left[\begin{array}{ccc} y_t z_s - y_s z_t & z_t x_s - z_s x_t & x_t y_s - x_s y_t \end{array} \right] \]

- \(x_t \) - x component of \(s \) tangent
- \(y_t \) - y component of \(s \) tangent
- \(z_t \) - z component of \(s \) tangent
Surface of Revolution

• Rotate planar curve (directrix) around an axis of revolution (z axis)
 – Cross-section is a circle
• Biparametric surface
 – u of curve
 – θ of angle of rotation
• Examples: cylinder, cone, sphere, torus

Drawing Parametric Surfaces

• Usually done “patch by patch”
• Two choices
 – Draw/render directly from the parametric description
 – Approximate the surface with a polygon mesh, then draw/render the mesh

Direct Rendering

• Use a scan-line algorithm
 – Evaluate pixel by pixel
 – Problem: How to go from (x,y) “screen space” to point on the 3D patch
 • Easy for a planar polygon where we know max/min y, equations for edges, screen depth
 • Not as easy for parametric surfaces

Issues for Direct Rendering

• Max/Min y coords may not lie on boundaries
• Silhouette edges result from patch bulges
 – Need to track both silhouettes and boundaries
 • What if they intersect?
 • Note: patch edges need not be monotonic in x or y
• Idea: Scan convert patch plane-by-plane, using scan planes instead of scan lines

Direct Scan Conversion of Patches

• Basic idea
 – Find intersection of patch with XZ plane
 • Producing a planar curve
 • De Boor, D’Casteljeau
 – Draw the curve
 • Note: if doing rendering, one can compute pixel-by-pixel color values this way
 – Patch: x=X(u,v), y=Y(u,v), z=Z(u,v)
Patch to Polygon Conversion

Two methods:
• **Object Space Conversion**
 – Techniques
 • Uniform subdivision
 • Non-uniform subdivision
 – Resolution: depends on object space
• **Image Space Conversion**
 – Resolution: depends on pixels and screen

Object Space Conversion: Uniform Subdivision

Basic Procedure
• Cut parameter space into equal parts
• Find new points on the surface
• Recurse/Repeat “until done”
• Split squares into triangles
• Render

Object Space Conversion: Non-Uniform Subdivision

• Basic idea
 – More facets in areas of high curvature
 – Use change in normals to surface to assess curvature
 – More derivatives
 – Break patch into sub-patches based on curvature changes

Image Space Conversion

• Idea: control subdivision based on screen criteria
 – Minimum pixel area
 • Stop when patch is basically one pixel
 – Screen flatness
 • Stop when patch converges to a polygon
 • Stop when edge is straight or size of pixel

How do I know if I’ve found a silhouette edge?

• If the viewing ray is tangent to the surface at the point it hits the surface!
 \[\mathbf{N} \cdot \mathbf{L} = 0 \]
 – Where \(\mathbf{N} \) is the normal at the point where \(\mathbf{L} \), the line of sight, hits the surface

Silhouette Determination

Xu, et al., U. of Minnesota
Kawasaki, et al.