CS 430
Computer Graphics

3D Modeling: Surfaces
Week 7, Lecture 14
David Breen, William Regli and Maxim Peysakhov
Department of Computer Science
Drexel University

Overview
• 3D model representations
• Mesh formats
• Bicubic surfaces
• Bezier surfaces
• Normals to surfaces
• Direct surface rendering

3D Modeling
• 3D Representations
 – Wireframe models
 – Surface Models
 – Solid Models
 – Meshes and Polygon soups
 – Voxel/Volume models
 – Decomposition-based
 • Octrees, voxels
• Modeling in 3D
 – Constructive Solid Geometry (CSG), Breps and feature-based

Representing 3D Objects
• Exact
 – Wireframe
 – Parametric Surface
 – Solid Model
 • CSG
 • BRep
 • Implicit Solid Modeling

• Approximate
 – Facet / Mesh
 • Just surfaces
 – Voxel
 • Volume info

Representing 3D Objects
• Exact
 – Precise model of object topology
 – Mathematically represent all geometry

• Approximate
 – A discretization of the 3D object
 – Use simple primitives to model topology and geometry

Negatives when Representing 3D Objects
• Exact
 – Complex data structures
 – Expensive algorithms
 – Wide variety of formats, each with subtle nuances
 – Hard to acquire data
 – Translation required for rendering

• Approximate
 – Lossy
 – Data structure sizes can get HUGE, if you want good fidelity
 – Easy to break (i.e. cracks can appear)
 – Not good for certain applications
 • Lots of interpolation and guess work
Positives when Representing 3D Objects

• Exact
 – Precision
 – Simulation, modeling, etc.
 – Lots of modeling environments
 – Physical properties
 – High-level control
 – Many applications (tool path generation, motion, etc.)
 – Compact

• Approximate
 – Easy to implement
 – Easy to acquire
 – 3D scanner, CT
 – Easy to render
 – Direct mapping to the graphics pipeline
 – Lots of algorithms

Exact Representations

• Wireframe
• Parametric Surface
• Solid Model
 – operations
 – CSG, BRep, implicit geometry

Wireframes

• Basic idea:
 – Represent the model as the set of all of its edges

• Example:
 A simple cube
 – 12 lines
 – 8 vertices

• How about the faces?

Issues with Wireframes

• Visually ambiguous
• No surfaces!
 – What’s inside? What’s outside?
 – Hidden line removal?
• What does validity entail?
 – Don’t we just have a bunch of wires?
 – Do they need to add up to something?
• How to model wireframe shapes?
 – Wire by wire? Not very easy!

Surface Models

• Basic idea:
 – Represent a model as a set of faces/patches

• Limitations:
 – Topological integrity; how do faces “line up”?: which way is “inside”/“outside”?

• Used in many CAD applications
 – Why? They are fine for drafting and rendering, not as good for creating true physical models

3D Mesh File Formats

Some common formats

• STL
• SMF
• OpenInventor
• VRML
• X3D
Minimal

- Vertex + Face
- No colors, normals, or texture
- Primarily used to demonstrate geometry algorithms

Full-Featured

- Colors / Transparency
- Vertex-Face Normals (optional, can be computed)
- Scene Graph
- Lights
- Textures
- Views and Navigation

Simple Mesh Format (SMF)

- Michael Garland
 http://graphics.cs.uiuc.edu/~garland/
- Triangle data
- Vertex indices begin at 1

```plaintext
#SMF 1.0
@vertices 5
@faces 6
v 2.6 0.0 2.0
v -2.6 0.0 -2.0
v -2.6 0.0 2.0
v 6.6 5.0 0.0
f 1 3 2
f 3 1 2
f 2 3 1
f 1 5 4
f 4 5 3
```

Stereolithography (STL)

- Triangle data + Face Normal
- The de-facto standard for rapid prototyping

```plaintext
solid
...
facet normal 0.00 0.00 1.00
outer loop
vertex 1.00 2.00 0.00
vertex -1.00 1.00 0.00
vertex 0.00 -1.00 0.00
endloop
endfacet
...
endsolid
```

Open Inventor

- Developed by SGI
- Predecessor to VRML
 - Scene Graph

Virtual Reality Modeling Language (VRML)

- SGML Based
- Scene-Graph
- Full Featured
X3D
• Open standards file format and run-time architecture to represent and communicate 3D scenes and objects using XML
• Supports
 – 2D/3D graphics, programmable shaders
 – 2D/3D compositing, CAD data, Animation
 – Spatialized audio and video, User interaction
 – Navigation, Scripting, Networking, Simulation
• See www.web3d.org for more info

Issues with 3D “mesh” formats
• Easy to acquire
• Easy to render
• Harder to model with
• Error prone
 – split faces, holes, gaps, etc

BRep Data Structures
• Winged-Edge Data Structure (Weiler)
 • Vertex
 – n edges
 • Edge
 – 2 vertices
 – 2 faces
 • Face
 – m edges

BRep Data Structure
• Vertex structure
 – X,Y,Z point
 – Pointers to n coincident edges
• Face structure
 – Pointers to m edges
• Edge structure
 – 2 pointers to end-point vertices
 – 2 pointers to adjacent faces
 – Pointer to next edge
 – Pointer to previous edge

Biparametric Surfaces
• Biparametric surfaces
 – A generalization of parametric curves
 – 2 parameters: s, t (or u, v)
 – Two parametric functions

Biparametric Patch
• (u,v) pair maps to a 3D point on patch
Bicubic Surfaces

- Recall the 2D curve: \(Q(s) = G \cdot M \cdot S \)
 - \(G \): Geometry Matrix
 - \(M \): Basis Matrix
 - \(S \): Polynomial Terms \([s^3 \ s^2 \ s \ 1] \)

- For 3D, we allow the points in \(G \) to vary in 3D along \(t \) as well:

\[
Q(s, t) = \begin{bmatrix} G_1(t) & G_2(t) & G_3(t) & G_4(t) \end{bmatrix} \cdot M \cdot S
\]

Observations About Bicubic Surfaces

- For a fixed \(t_1 \), \(Q(s, t_1) \) is a curve
- Gradually incrementing \(t_1 \) to \(t_2 \), we get a new curve
- The combination of these curves is a surface
- \(G_i(t) \) are 3D curves

Bicubic Surfaces

- Each \(G_i(t) = G_i \cdot M \cdot T \), where

\[
G_i = \begin{bmatrix} g_{i1} & g_{i2} & g_{i3} & g_{i4} \end{bmatrix}
\]

- Transposing \(G_i(t) \), we get

\[
G_i(t) = T^T \cdot M^T \cdot G_i^T
\]

\[
= T^T \cdot M^T \cdot \begin{bmatrix} g_{i1} & g_{i2} & g_{i3} & g_{i4} \end{bmatrix}
\]

Bicubic Surfaces

- Writing out gives

\[
Q(s, t) = T^T \cdot M^T \cdot G \cdot M \cdot S \quad 0 \leq s, t \leq 1
\]

\[
x(s, t) = T^T \cdot M^T \cdot G_x \cdot M \cdot S
\]

\[
y(s, t) = T^T \cdot M^T \cdot G_y \cdot M \cdot S
\]

\[
z(s, t) = T^T \cdot M^T \cdot G_z \cdot M \cdot S
\]

Bézier Surfaces

- Bézier Surfaces
 (similar definition)

\[
x(s, t) = T^T \cdot M^T_b \cdot G_b \cdot M_b \cdot S
\]

\[
y(s, t) = T^T \cdot M^T_b \cdot G_b \cdot M_b \cdot S
\]

\[
z(s, t) = T^T \cdot M^T_b \cdot G_b \cdot M_b \cdot S
\]
Bicubic Bezier Patches

Using same data array \(P = \{ p_{ij} \} \) as with interpolating form

\[
\tilde{p}(u,v) = \sum_{i=0}^{3} \sum_{j=0}^{3} b_i(u)b_j(v)\tilde{p}_{ij} = u^3M_i^uP^uM_j^v
\]

Patch lies in convex hull

Cubic Bezier Blending Functions

\[
b_i(u) = \begin{cases} (1-u)^3 & \text{if } u < 0 \\ \frac{3u(1-u)^2}{3u(1-u)} & \text{if } 0 \leq u < 1 \\ 0 & \text{if } u \geq 1 \end{cases}
\]

Note that all zeros are at 0 and 1 which forces the functions to be smooth over \((0,1)\)

Bicubic Bézier Patches

- Expanding the summation

\[
\tilde{p}(u,v) = \sum_{i=0}^{3} \sum_{j=0}^{3} b_i(u)b_j(v)\tilde{p}_{ij} = \sum_{i=0}^{3} b_i(u)b_0(v)\tilde{p}_{i0} + \sum_{j=0}^{3} b_0(u)b_j(v)\tilde{p}_{0j} + b_1(u)b_0(v)\tilde{p}_{10} + b_0(u)b_1(v)\tilde{p}_{01} + \text{etc.}
\]

Plotting Isolines

Faceting

Composite Bézier Surfaces

- C^0 and G^0 continuity can be achieved between two patches by setting the 4 boundary control points to be equal.
- G^1 continuity achieved when cross-wise CPs are co-linear.

Bézier Surfaces: Example

- Utah Teapot modeled by 32 Bézier Patches with G^1 continuity.

Bezier Surface: Example

- Increased facet resolution
- Rendered

B-spline Surfaces

\[
\begin{align*}
x(s,t) &= T^T \cdot M^T_{B_s} \cdot G_{B_s} \cdot M_{B_s} \cdot S \\
y(s,t) &= T^T \cdot M^T_{B_s} \cdot G_{B_s} \cdot M_{B_s} \cdot S \\
z(s,t) &= T^T \cdot M^T_{B_s} \cdot G_{B_s} \cdot M_{B_s} \cdot S
\end{align*}
\]

- Representation for B-spline patches
- C^2 continuity across boundaries is automatic with B-splines.

Normals to Surfaces

- Normals used for
 - Shading
 - Interference detection in robotics
 - Calculating offsets for numerically controlled machining

Computing the Normals to Surfaces

- For a bicubic surface, first, compute the s tangent vector

\[
\begin{align*}
\frac{\delta}{\delta s} Q(s,t) & = \frac{\delta}{\delta s} \left(T^T \cdot M^T \cdot G \cdot M \cdot S \right) \\
& = T^T \cdot M^T \cdot G \cdot M \cdot \frac{\delta}{\delta s} (S) \\
& = T^T \cdot M^T \cdot G \cdot M \cdot \begin{bmatrix} 3s^2 & 2s & 1 \end{bmatrix}^T
\end{align*}
\]
Computing the Normals to Surfaces

Next, compute the \(t \) tangent vector:

\[
\frac{\delta}{\delta t} Q(s,t) = \delta \left(T^T \cdot M^T \cdot G \cdot M \cdot S \right) = \delta \left(T^T \right) \cdot M^T \cdot G \cdot M \cdot S = \left[3r^2 \ 2t \ 1 \ 0 \right]^T \cdot M^T \cdot G \cdot M \cdot S
\]

Surface of Revolution

- Rotate planar curve (directrix) around an axis of revolution (z axis)
 - Cross-section is a circle
- Biparametric surface
 - \(u \) of curve
 - \(\theta \) of angle of rotation
- Examples: cylinder, cone, sphere, torus

Drawing Parametric Surfaces

- Usually done “patch by patch”
- Two choices
 - Draw/render directly from the parametric description
 - Approximate the surface with a polygon mesh, then draw/render the mesh

Direct Rendering

- Use a scan-line algorithm
 - Evaluate pixel by pixel
 - Problem: How to go from \((x, y)\) “screen space” to point on the 3D patch
 - Easy for a planar polygon where we know max/min y, equations for edges, screen depth
 - Not as easy for parametric surfaces
Issues for Direct Rendering

- Max/Min y coords may not lie on boundaries
- Silhouette edges result from patch bulges
 - Need to track both silhouettes and boundaries
 - Note: patch edges need not be monotonic in x or y
- Idea: Scan convert patch plane-by-plane, using scan planes instead of scan lines

Direct Scan Conversion of Patches

- Basic idea
 - Find intersection of patch with XZ plane
 - Producing a planar curve
 - Draw the curve
 - De Boor, D’Casteljeau
 - Note: if doing rendering, one can compute pixel-by-pixel color values this way
 - Patch: \(x=X(u,v), y=Y(u,v), z=Z(u,v) \)

Patch to Polygon Conversion

Two methods:
- **Object Space Conversion**
 - Techniques
 - Uniform subdivision
 - Non-uniform subdivision
 - Resolution: depends on object space
- **Image Space Conversion**
 - Resolution: depends on pixels and screen

Object Space Conversion: Uniform Subdivision

Basic Procedure
- Cut parameter space into equal parts
- Find new points on the surface
- Recurse/Repeat “until done”
- Split squares into triangles
- Render

Object Space Conversion: Non-Uniform Subdivision

- Basic idea
 - More facets in areas of high curvature
 - Use change in normals to surface to assess curvature
 - More derivatives
 - Break patch into sub-patches based on curvature changes

Image Space Conversion

- Idea: control subdivision based on screen criteria
 - Minimum pixel area
 - Stop when patch is basically one pixel
 - Screen flatness
 - Stop when patch converges to a polygon
 - Screen flatness of silhouette edges
 - Stop when edge is straight or size of pixel

Object Space Conversion: Non-Uniform Subdivision

- Basic idea
 - More facets in areas of high curvature
 - Use change in normals to surface to assess curvature
 - More derivatives
 - Break patch into sub-patches based on curvature changes

Image Space Conversion

- Idea: control subdivision based on screen criteria
 - Minimum pixel area
 - Stop when patch is basically one pixel
 - Screen flatness
 - Stop when patch converges to a polygon
 - Screen flatness of silhouette edges
 - Stop when edge is straight or size of pixel
How do I know if I’ve found a silhouette edge?

- If the viewing ray is tangent to the surface at the point it hits the surface!

\[N \cdot L = 0 \]

- Where \(N \) is the normal at the point where \(L \), the line of sight, hits the surface