Simple Mesh Format (SMF)

- Michael Garland
 http://graphics.cs.uiuc.edu/~garland/

- Triangle data

- Vertex indices begin at 1

```plaintext
#$SMF 1.0
#$vertices 5
#$faces 6
v 2.0 0.0 2.0
v 2.0 0.0 -2.0
v -2.0 0.0 -2.0
v -2.0 0.0 2.0
v 0.0 5.0 0.0
f 1 3 2
f 1 4 3
f 3 5 2
f 2 5 1
f 1 5 4
f 4 5 3
```
3D Clipping

- Cohen-Sutherland and Cyrus-Beck can be trivially extended to 3D

- We will cover:
 - Cohen-Sutherland for 3D, (parallel projection)
 - Cohen-Sutherland for 3D, (perspective projection)
Recall: Cohen-Sutherland

- Line is completely visible iff both code values of endpoints are 0, i.e. $C_0 \lor C_1 = 0$
- If line segments are completely outside the window, then $C_0 \land C_1 \neq 0$

\[
\begin{array}{ccc}
1001 & 1000 & 1010 \\
\hline
\text{Window} & 0000 & 0010 \\
\hline
0001 & 0100 & 0110 \\
\hline
\text{WL} & \text{WR} & WT \\
\end{array}
\]
Cohen-Sutherland for 3D, Parallel Projection

- Use 6 bits
- Trivially accept if all end-codes are 0
- Trivially reject if bit-by-bit AND of end-codes is not 0
- Up to 6 intersections may have to be computed

<table>
<thead>
<tr>
<th>bit</th>
<th>Description</th>
<th>Condition</th>
</tr>
</thead>
<tbody>
<tr>
<td>1</td>
<td>point ABOVE the view volume</td>
<td>$y > 1$</td>
</tr>
<tr>
<td>2</td>
<td>point BELOW the view volume</td>
<td>$y < -1$</td>
</tr>
<tr>
<td>3</td>
<td>point RIGHT OF the view volume</td>
<td>$x > 1$</td>
</tr>
<tr>
<td>4</td>
<td>point LEFT OF the view volume</td>
<td>$x < -1$</td>
</tr>
<tr>
<td>5</td>
<td>point BEHIND the view volume</td>
<td>$z < -1$</td>
</tr>
<tr>
<td>6</td>
<td>point IN FRONT the view volume</td>
<td>$z > 0$</td>
</tr>
</tbody>
</table>
Cohen-Sutherland for 3D computing intersection points.

- Use parametric representation of the line to compute intersections
- So for $y=1$ replace y with 1 and solve for t
- If $1 \geq t \geq 0$ use it to find x and z
- Test if x and z are in valid range
- Repeat for planes $y=-1$, $x=1$, $x=-1$, $z=-1$, $z=0$

\[
\begin{align*}
x &= x_0 + t(x_1 - x_0) \\
y &= y_0 + t(y_1 - y_0) \\
z &= z_0 + t(z_1 - z_0)
\end{align*}
\]

\[
t = \frac{(1 - y_0)}{(y_1 - y_0)}
\]
Cohen-Sutherland for 3D, Perspective Projection

- Use 6 bits identical to parallel view volume clipping
- Conditions on the codes are different
- Trivially accept/reject lines using same roles
- Intersection points computed differently

<table>
<thead>
<tr>
<th>bit</th>
<th>Description</th>
<th>Condition</th>
</tr>
</thead>
<tbody>
<tr>
<td>1</td>
<td>point ABOVE the view volume</td>
<td>$y > -z$</td>
</tr>
<tr>
<td>2</td>
<td>point BELOW the view volume</td>
<td>$y < z$</td>
</tr>
<tr>
<td>3</td>
<td>point RIGHT OF the view volume</td>
<td>$x > -z$</td>
</tr>
<tr>
<td>4</td>
<td>point LEFT OF the view volume</td>
<td>$x < z$</td>
</tr>
<tr>
<td>5</td>
<td>point BEHIND the view volume</td>
<td>$z < -1$</td>
</tr>
<tr>
<td>6</td>
<td>point IN FRONT the view volume</td>
<td>$z > z_{\text{min}}$</td>
</tr>
</tbody>
</table>
Cohen-Sutherland for 3D computing intersection points.

- Intersections with planes $z=-1, z=z_{min}$ is the same.
- Calculating intersections with a sloping plane ...
- For plane $y=z$ these two equations are equal
- Repeat for planes $y=-z, x=z, x=-z$

\[
\begin{align*}
 x &= x_0 + t(x_1 - x_0) \\
 y &= y_0 + t(y_1 - y_0) \\
 z &= z_0 + t(z_1 - z_0) \\
 t &= \frac{(z_0 - y_0)}{(y_1 - y_0) - (z_1 - z_0)}
\end{align*}
\]
“3D Clipping” for HWs 4 & 5

• Only do trivial reject test
• For HW4 just do X and Y tests
• ‘AND’ all vertex bit codes for a polygon
• If result != 0, then reject polygon
 – i.e. remove from projection pipeline
More Efficient Alternative?

• Use 3D Cohen-Sutherland to do trivial reject
• Project remaining polygons onto view plane
• Clip polygons in 2D
• Remember that user-defined window is redefined for canonical view volumes!
end clipping
Overview

• 3D model representations
• Mesh formats
• Bicubic surfaces
• Bezier surfaces
• Normals to surfaces
• Direct surface rendering
3D Modeling

• 3D Representations
 – Wireframe models
 – Surface Models
 – Solid Models
 – Meshes and Polygon soups
 – Voxel/Volume models
 – Decomposition-based
 • Octrees, voxels

• Modeling in 3D
 – Constructive Solid Geometry (CSG),
 Breps and feature-based
Representing 3D Objects

• Exact
 – Wireframe
 – Parametric Surface
 – Solid Model
 • CSG
 • BRep
 • Implicit Solid Modeling

• Approximate
 – Facet / Mesh
 • Just surfaces
 – Voxel
 • Volume info
Representing 3D Objects

• Exact
 – Precise model of object topology
 – Mathematically represent all geometry

• Approximate
 – A discretization of the 3D object
 – Use simple primitives to model topology and geometry
Negatives when Representing 3D Objects

• Exact
 – Complex data structures
 – Expensive algorithms
 – Wide variety of formats, each with subtle nuances
 – Hard to acquire data
 – Translation required for rendering

• Approximate
 – Lossy
 – Data structure sizes can get HUGE, if you want good fidelity
 – Easy to break (i.e. cracks can appear)
 – Not good for certain applications
 • Lots of interpolation and guess work
Positives when Representing 3D Objects

• **Exact**
 – Precision
 • Simulation, modeling, etc
 – Lots of modeling environments
 – Physical properties
 – High-level control
 – Many applications (tool path generation, motion, etc.)
 – Compact

• **Approximate**
 – Easy to implement
 – Easy to acquire
 • 3D scanner, CT
 – Easy to render
 • Direct mapping to the graphics pipeline
 – Lots of algorithms
Exact Representations

- Wireframe
- Parametric Surface
- Solid Model
 - operations
 - CSG, BRep, implicit geometry
Wireframes

• Basic idea:
 – Represent the model as the set of all of its edges

• Example:
 A simple cube
 – 12 lines
 – 8 vertices

• How about the faces?

Foley/VanDam, 1990/1994
Issues with Wireframes

- Visually ambiguous
- No surfaces!
 - What’s inside? What’s outside?
 - Hidden line removal?
- What does validity entail?
 - Don’t we just have a bunch of wires?
 - Do they need to add up to something?
- How to model wireframe shapes?
 - Wire by wire? Not very easy!
Surface Models

• Basic idea:
 – Represent a model as a set of faces/patches

• Limitations:
 – Topological integrity; how do faces “line up”?; which way is ‘inside’ / ‘outside’?

• Used in many CAD applications
 – Why? They are fine for drafting and rendering, not as good for creating true physical models
3D Mesh File Formats

Some common formats

- STL
- SMF
- OpenInventor
- VRML
- X3D
Minimal

- Vertex + Face
- No colors, normals, or texture
- Primarily used to demonstrate geometry algorithms
Full-Featured

- Colors / Transparency
- Vertex-Face Normals (optional, can be computed)
- Scene Graph
- Lights
- Textures
- Views and Navigation
Simple Mesh Format (SMF)

- Michael Garland
 http://graphics.cs.uiuc.edu/~garland/

- Triangle data

- Vertex indices begin at 1

```plaintext
#$SMF 1.0
#$vertices 5
#$faces 6
v 2.0 0.0 2.0
v 2.0 0.0 -2.0
v -2.0 0.0 -2.0
v -2.0 0.0 2.0
v 0.0 5.0 0.0
f 1 3 2
f 1 4 3
f 3 5 2
f 2 5 1
f 1 5 4
f 4 5 3
```
Stereolithography (STL)

- Triangle data + Face Normal
- The de-facto standard for rapid prototyping
Open Inventor

- Developed by SGI
- Predecessor to VRML
 – Scene Graph
Virtual Reality Modeling Language (VRML)

- SGML Based
- Scene-Graph
- Full Featured

```xml
#VRML V2.0 utf8
# A Cylinder
Shape {
    appearance Appearance {
        material Material {
    }
    geometry Cylinder {
        height 2.0
        radius 1.5
    }
}
```
X3D

- Open standards file format and run-time architecture to represent and communicate 3D scenes and objects using XML
- Supports
 - 2D/3D graphics, programmable shaders
 - 2D/3D compositing, CAD data, Animation
 - Spatialized audio and video, User interaction
 - Navigation, Scripting, Networking, Simulation
- See www.web3d.org for more info
Issues with 3D “mesh” formats

• Easy to acquire
• Easy to render
• Harder to model with
• Error prone
 – split faces, holes, gaps, etc
BRep Data Structures

- Winged-Edge Data Structure (Weiler)
- Vertex
 - n edges
- Edge
 - 2 vertices
 - 2 faces
- Face
 - m edges

Pics/Math courtesy of Dave Mount @ UMD-CP
BRep Data Structure

- **Vertex structure**
 - X,Y,Z point
 - Pointers to \(n \) coincident edges

- **Face structure**
 - Pointers to \(m \) edges

- **Edge structure**
 - 2 pointers to end-point vertices
 - 2 pointers to adjacent faces
 - Pointer to next edge
 - Pointer to previous edge
Biparametric Surfaces

• Biparametric surfaces
 – A generalization of parametric curves
 – 2 parameters: s, t (or u, v)
 – Two parametric functions
Biparametric Patch

- \((u,v)\) pair maps to a 3D point on patch
Bicubic Surfaces

• Recall the 2D curve: \(Q(s) = G \cdot M \cdot S \)
 – \(G \): Geometry Matrix
 – \(M \): Basis Matrix
 – \(S \): Polynomial Terms \([s^3 \ s^2 \ s \ 1] \)

• For 3D, we allow the points in \(G \) to vary in 3D along \(t \) as well:

\[
Q(s,t) = \begin{bmatrix}
 G_1(t) & G_2(t) & G_3(t) & G_4(t)
\end{bmatrix} \cdot M \cdot S
\]
Observations About Bicubic Surfaces

- For a fixed t_1, $Q(s, t_1)$ is a curve.
- Gradually incrementing t_1 to t_2, we get a new curve.
- The combination of these curves is a surface.
- $G_i(t)$ are 3D curves.
Bicubic Surfaces

- Each $G_i(t)$ is $G_i(t) = G_i \cdot M \cdot T$, where
 $$G_i = \begin{bmatrix} g_{i1} & g_{i2} & g_{i3} & g_{i4} \end{bmatrix}$$

- Transposing $G_i(t)$, we get
 $$G_i(t) = T^T \cdot M^T \cdot G_i^T$$

 $$= T^T \cdot M^T \cdot \begin{bmatrix} g_{i1} & g_{i2} & g_{i3} & g_{i4} \end{bmatrix}^T$$
Bicubic Surfaces

- Substituting $G_i(t)$ into $Q(s) = G \cdot M \cdot S$, we get $Q(s, t)$
- The g_{11}, etc. are the control points for the Bicubic surface patch:

\[
Q(s, t) = T^T \cdot M^T \cdot \begin{bmatrix}
g_{11} & g_{21} & g_{31} & g_{41} \\
g_{12} & g_{22} & g_{32} & g_{42} \\
g_{13} & g_{23} & g_{33} & g_{43} \\
g_{14} & g_{24} & g_{34} & g_{44}
\end{bmatrix} \cdot M \cdot S
\]
Bicubic Surfaces

- Writing out $Q(s, t) = T^T \cdot M^T \cdot G \cdot M \cdot S \quad 0 \leq s, t \leq 1$ gives

\[
\begin{align*}
x(s, t) &= T^T \cdot M^T \cdot G_x \cdot M \cdot S \\
y(s, t) &= T^T \cdot M^T \cdot G_y \cdot M \cdot S \\
z(s, t) &= T^T \cdot M^T \cdot G_z \cdot M \cdot S
\end{align*}
\]
Bézier Surfaces

- Bézier Surfaces (similar definition)

$$x(s,t) = T^T \cdot M_B^T \cdot G_{B_x} \cdot M_B \cdot S$$

$$y(s,t) = T^T \cdot M_B^T \cdot G_{B_y} \cdot M_B \cdot S$$

$$z(s,t) = T^T \cdot M_B^T \cdot G_{B_z} \cdot M_B \cdot S$$
Bicubic Bezier Patches

Using same data array $P=[p_{ij}]$ as with interpolating form

$$\vec{p}(u,v) = \sum_{i=0}^{3} \sum_{j=0}^{3} b_i(u)b_j(v) \vec{p}_{ij} = u^T M_B P M_B^T v$$

Patch lies in convex hull
Bicubic Bézier Patches

• Expanding the summation

\[\tilde{p}(u, v) = \sum_{i=0}^{3} \sum_{j=0}^{3} b_i(u)b_j(v)\tilde{p}_{ij} = \]

\[= b_0(u)b_0(v)\tilde{p}_{00} + b_0(u)b_1(v)\tilde{p}_{01} + b_0(u)b_2(v)\tilde{p}_{02} + b_0(u)b_3(v)\tilde{p}_{03} + b_1(u)b_0(v)\tilde{p}_{10} + \]

etc.
Cubic Bezier Blending Functions

\[b(u) = \begin{bmatrix} (1 - u)^3 \\ 3u(1 - u)^2 \\ 3u^2(1 - u) \\ u^3 \end{bmatrix} \]

Note that all zeros are at 0 and 1 which forces the functions to be smooth over (0,1)
Plotting Isolines
Faceting
Faceting
Composite Bézier Surfaces

- C^0 and G^0 continuity can be achieved between two patches by setting the 4 boundary control points to be equal.
- G^1 continuity achieved when cross-wise CPs are co-linear.
Bézier Surfaces: Example

- Utah Teapot modeled by 32 Bézier Patches with G^1 continuity
Beziers: Example

- Increased facet resolution
- Rendered
B-spline Surfaces

\[x(s, t) = T^T \cdot M_{Bs}^T \cdot G_{Bs_x} \cdot M_{Bs} \cdot S \]
\[y(s, t) = T^T \cdot M_{Bs}^T \cdot G_{Bs_y} \cdot M_{Bs} \cdot S \]
\[z(s, t) = T^T \cdot M_{Bs}^T \cdot G_{Bs_z} \cdot M_{Bs} \cdot S \]

- Representation for B-spline patches
- \(C^2 \) continuity across boundaries is automatic with B-splines
Normals to Surfaces

- Normals used for
 - Shading
 - Interference detection in robotics
 - Calculating offsets for numerically controlled machining
Computing the Normals to Surfaces

• For a bicubic surface, first, compute the \(s \) tangent vector

\[
\frac{\delta}{\delta s} Q(s, t) = \frac{\delta}{\delta s} \left(T^T \cdot M^T \cdot G \cdot M \cdot S \right) = T^T \cdot M^T \cdot G \cdot M \cdot \frac{\delta}{\delta s} (S) = T^T \cdot M^T \cdot G \cdot M \cdot [3s^2 \ 2s \ 1 \ 0]^T
\]
Computing the Normals to Surfaces

• Next, compute the t tangent vector:

$$
\frac{\delta}{\delta t} Q(s, t) = \frac{\delta}{\delta t} \left(T^T \cdot M^T \cdot G \cdot M \cdot S \right) \\
= \frac{\delta}{\delta t} (T^T) \cdot M^T \cdot G \cdot M \cdot S \\
= \begin{bmatrix} 3t^2 & 2t & 1 & 0 \end{bmatrix}^T \cdot M^T \cdot G \cdot M \cdot S
$$
Computing the Normals to Surfaces

• Since \(s \) and \(t \) are tangent to the surface, their cross product is the normal vector to the surface!

\[
\frac{\delta}{\delta s} Q(s,t) \times \frac{\delta}{\delta t} Q(s,t) = \begin{bmatrix}
y_s z_t - y_t z_s & z_s x_t - z_t x_s & x_s y_t - x_t y_s
\end{bmatrix}
\]

• \(x_s \) - \(x \) component of \(s \) tangent
• \(y_s \) - \(y \) component of \(s \) tangent
• \(z_s \) - \(z \) component of \(s \) tangent
Surface of Revolution

• Rotate planar curve (*directrix*) around an *axis of revolution* (z axis)
 – Cross-section is a circle
• Biparametric surface
 – u of curve
 – θ of angle of rotation
• Examples: cylinder, cone, sphere, torus
Surface of Revolution

- **Directrix:**
 - \(D(u) = (f(u), 0, g(u)) \)

- **Surface:**
 - \(S(u, \theta) = (f(u)\cos(\theta), f(u)\sin(\theta), g(u)) \)
 - \(0 \leq u \leq 1, \ 0 \leq \theta \leq 2\pi \)

- **Tangents:**
 - \(\partial S/\partial u = (f'(u)\cos(\theta), f'(u)\sin(\theta), g'(u)) \)
 - \(\partial S/\partial \theta = (-f(u)\sin(\theta), f(u)\cos(\theta), 0) \)
 - \(N(u, \theta) = \partial S/\partial u \times \partial S/\partial \theta \)
Drawing Parametric Surfaces

• Usually done “patch by patch”
• Two choices
 – Draw/render directly from the parametric description
 – Approximate the surface with a polygon mesh, then draw/render the mesh
Direct Rendering

• Use a scan-line algorithm
 – Evaluate pixel by pixel
 – Problem: How to go from \((x,y)\) “screen space” to point on the 3D patch
 • Easy for a planar polygon where we know max/min \(y\), equations for edges, screen depth
 • Not as easy for parametric surfaces
Issues for Direct Rendering

• Max/Min y coords may not lie on boundaries
• Silhouette edges result from patch bulges
 – Need to track both silhouettes and boundaries
 • What if they intersect?
 • Note: patch edges need not be monotonic in x or y

• Idea: Scan convert patch *plane-by-plane*, using scan planes instead of scan lines
Direct Scan Conversion of Patches

- Basic idea
 - Find intersection of patch with XZ plane
 - Producing a planar curve
 - Draw the curve
 - De Boor, D’ Casteljeau
 - Note: if doing rendering, one can compute pixel-by-pixel color values this way
 - Patch: $x = X(u, v), \quad y = Y(u, v), \quad z = Z(u, v)$
Patch to Polygon Conversion

Two methods:

• **Object Space Conversion**
 – Techniques
 • Uniform subdivision
 • Non-uniform subdivision
 – Resolution: depends on object space

• **Image Space Conversion**
 – Resolution: depends on pixels and screen
Object Space Conversion: Uniform Subdivision

Basic Procedure

- Cut parameter space into equal parts
- Find new points on the surface
- Recurse/Repeat “until done”
- Split squares into triangles
- Render
Object Space Conversion: Non-Uniform Subdivision

• Basic idea
 – More facets in areas of high curvature
 – Use change in normals to surface to assess curvature
 • More derivatives
 – Break patch into sub-patches based on curvature changes
Image Space Conversion

• Idea: control subdivision based on screen criteria
 – Minimum pixel area
 • Stop when patch is basically one pixel
 – Screen flatness
 • Stop when patch converges to a polygon
 – Screen flatness of silhouette edges
 • Stop when edge is straight or size of pixel
How do I know if I’ve found a silhouette edge?

• If the viewing ray is tangent to the surface at the point it hits the surface!

\[N \cdot L = 0 \]

– Where \(N \) is the normal at the point where \(L \), the line of sight, hits the surface
Silhouette Determination

\[\mathbf{N} \cdot \mathbf{L} = 0 \]

Interior of surface

Surface Normal (bold)

Silhouette Point

View rays

Xu, et al., U. of Minnesota

Brenner & Hughes, Brown U.

Kowalski, et al.