Curves and Surfaces

CS 432 Interactive Computer Graphics
Prof. David E. Breen
Department of Computer Science

Objectives

- Introduce types of curves and surfaces
 - Explicit
 - Implicit
 - Parametric
 - Strengths and weaknesses
- Discuss Modeling and Approximations
 - Conditions
 - Stability

Escaping Flatland

- Until now we have worked with flat entities such as lines and flat polygons
 - Fit well with graphics hardware
 - Mathematically simple
- But the world is not composed of flat entities
 - Need curves and curved surfaces
 - May only have need at the application level
 - Implementation can render them approximately with flat primitives

Modeling with Curves

What Makes a Good Representation?

- There are many ways to represent curves and surfaces
- Want a representation that is
 - Stable
 - Smooth
 - Easy to evaluate
 - Must we interpolate or can we just come close to data?
 - Do we need derivatives?

Explicit Representation

- Most familiar form of curve in 2D
 \[y = f(x) \]
- Cannot represent all curves
 - Vertical lines
 - Circles
- Extension to 3D
 - \[y = f(x), z = g(x) \]
 - The form \(z = f(x,y) \) defines a surface
Implicit Representation

- Two dimensional curve(s)
 \[g(x,y)=0 \]
- Much more robust
 - All lines \(ax+by+c=0 \)
 - Circles \(x^2+y^2=r^2=0 \)
- Three dimensions \(g(x,y,z)=0 \) defines a surface
 - Intersect two surface to get a curve
- In general, we cannot exactly solve for points that satisfy the equation

Algebraic Surface

\[\sum_{i,j,k} a_{i,j,k} x^i y^j z^k \]
- Quadric surface \(2 \geq i+j+k \)
- At most 10 terms
- Can solve intersection with a ray by reducing problem to solving quadratic equation

Parametric Curves

- Separate equation for each spatial variable
 \[\begin{align*}
 x &= x(u) \\
 y &= y(u) \\
 z &= z(u)
 \end{align*} \]
- For \(u_{\text{max}} \geq u \geq u_{\text{min}} \) we trace out a curve in two or three dimensions

Selecting Functions

- Usually we can select "good" functions
 - not unique for a given spatial curve
 - Approximate or interpolate known data
 - Want functions which are easy to evaluate
 - Want functions which are easy to differentiate
 - Computation of normals
 - Connecting pieces (segments)
 - Want functions which are smooth

Parametric Lines

We can normalize \(u \) to be over the interval \((0,1)\)
- Line connecting two points \(p_0 \) and \(p_1 \)
 \[p(u)=(1-u)p_0+up_1 \]
- Ray from \(p_0 \) in the direction \(d \)
 \[p(u)=p_0+ud \]

Curve Segments

- After normalizing \(u \), each curve is written
 \[p(u)=[x(u), y(u), z(u)]^T, \quad 1 \geq u \geq 0 \]
- In classical numerical methods, we design a single global curve
- In computer graphics and CAD, it is better to design small connected curve segments
Parametric Polynomial Curves

\[x(u) = \sum_{i=0}^{N} c_{xi}u^i \quad y(u) = \sum_{j=0}^{M} c_{yj}u^j \quad z(u) = \sum_{k=0}^{K} c_{zk}u^k \]

- If \(N=M=K \), we need to determine \(3(N+1) \) coefficients
- Equivalently, we need \(3(N+1) \) independent conditions
- Noting that the curves for \(x, y \) and \(z \) are independent, we can define each independently in an identical manner
- We will use the form where \(p \) can be any of \(x, y, z \)

\[p(u) = \sum_{k=0}^{3} c_{p}u^k \]

Why Polynomials

- Easy to evaluate
- Continuous and differentiable everywhere
 - Must worry about continuity at join points including continuity of derivatives

Cubic Parametric Polynomials

- \(N=M=L=3 \), gives balance between ease of evaluation and flexibility in design
 \[p(u) = \sum_{k=0}^{3} c_{p}u^k \]
 - Four coefficients to determine for each of \(x, y \) and \(z \)
 - Seek four independent conditions for various values of \(u \) resulting in 4 equations in 4 unknowns for each of \(x, y \) and \(z \)
 - Conditions are a mixture of continuity requirements at the join points and conditions for fitting the data

Cubic Polynomial Surfaces

\[p(u,v) = [x(u,v), y(u,v), z(u,v)]^T \]

where

\[p(u, v) = \sum_{i=0}^{3} \sum_{j=0}^{3} c_{ij}u^i v^j \]

\(p \) is any of \(x, y \) or \(z \)

Need 48 coefficients (3 independent sets of 16) to determine a surface patch

Objectives

- Introduce the types of curves
 - Interpolating
 - Hermite
 - Bezier
 - B-spline
- Analyze their performance
Matrix-Vector Form

\[p(u) = \sum_{k=0}^{3} c_k u^k \]

define \[c = \begin{bmatrix} c_0 \\ c_1 \\ c_2 \\ c_3 \end{bmatrix} \quad u = \begin{bmatrix} 1 \\ u \\ u^2 \\ u^3 \end{bmatrix} \]

then \[p(u) = u^T c = c^T u \]

Interpolating Curve

Given four data (control) points \[p_0, p_1, p_2, p_3 \]
determine cubic \[p(u) \] which passes through them

Must find \(c_0, c_1, c_2, c_3 \)

Special case of the Lagrange polynomial interpolation

Other Types of Curves and Surfaces

- How can we get around the limitations of the interpolating form
 - Lack of smoothness
 - Discontinuous derivatives at join points
- We have four conditions (for cubics) that we can apply to each segment
 - Use them other than for interpolation
 - Need only come close to the data

Hermite Form

Use two interpolating conditions and two derivative conditions per segment

Ensures continuity and first derivative continuity between segments

Example

Here the \(p \) and \(q \) have the same tangents at the ends of the segment but different derivatives

- Generate different Hermite curves
- This technique is used in drawing applications

Bezier and Spline Curves
Objectives

• Introduce Bezier curves
• Derive the required matrices
• Introduce the B-spline and compare it to the standard cubic Bezier

Bezier’s Idea

• In graphics and CAD, we do not usually have derivative data
• Bezier suggested using the same 4 data points as with the cubic interpolating curve to approximate the derivatives in the Hermite form

Computing Derivatives

- $p(0) = p_0 = c_0$
- $p(1) = p_3 = c_0 + c_1 + c_2 + c_3$

Approximating derivative conditions
- $p'(0) = 3(p_1 - p_0) = c_1$
- $p'(1) = 3(p_3 - p_2) = c_1 + 2c_2 + 3c_3$

Solve four linear equations for $c = M_B \cdot p$

Bezier Matrix

$$M_B = \begin{bmatrix}
1 & 0 & 0 & 0 \\
-3 & 3 & 0 & 0 \\
3 & -6 & 3 & 0 \\
-1 & 3 & -3 & 1
\end{bmatrix}$$

$p(u) = u^3 M_B \cdot p = b(u)^3 p$

blending functions

Blending Functions

$$b(u) = \begin{bmatrix}
(1-u)^3 \\
3u(1-u)^2 \\
3u^2(1-u) \\
u^3
\end{bmatrix}$$

Note that all zeros are at 0 and 1 which forces the functions to be smooth over (0,1)
Cubic Bezier Curve

• Multiplying it all out gives

\[p(u) = (1-u)^3p_0 + 3u(1-u)^2p_1 + 3u^2(1-u)p_2 + u^3p_3 \]

\[0 \leq u \leq 1 \]

Bernstein Polynomials

• The blending functions are a special case of the Bernstein polynomials

\[b_{mk}(u) = \binom{d}{k} u^k (1-u)^{d-k} \]

• These polynomials give the blending polynomials for any degree Bezier form
 - All zeros at 0 and 1
 - For any degree they all sum to 1
 - They are all between 0 and 1 inside (0,1)

General Form of Bezier Curve

\[\mathbf{p}(u) = \sum_{i=0}^{k} \mathbf{p}_{i+1} \binom{k}{i} (1-u)^{k-i} u^i \]

Convex Hull Property

• The properties of the Bernstein polynomials ensure that all Bezier curves lie within the convex hull of their control points

Parametric and Geometric Continuity

• We can require the derivatives of x, y, and z to each be continuous at join points (parametric continuity)
• Alternately, we can only require that the tangents of the resulting curve be continuous (geometry continuity)
• The latter gives more flexibility since we need to satisfy only two conditions rather than three at each join point

Parametric Continuity

• Continuity (recall from the calculus):
 - Two curves are \(C^r \) continuous at a point \(p \) if the \(r \)-th derivatives of the curves are equal at \(p \)
Chaining Bézier Curves

- Fit curve through set of data points

Catmull-Rom Splines

- An interpolating spline through multiple points
- Like Bézier, equivalent to Hermite
 - in fact, all splines of this form are equivalent
- First example of a spline based on just an input point sequence
- Does not have convex hull property
- Only has C1 continuity

Catmull-Rom splines

- Tangents are \((p_{k+1} - p_{k-1})/2\) for interior control points \((p_k)\)
- User specifies tangents at first \((\mathcal{T}_0)\) and last \((\mathcal{T}_n)\) input points
- Or fit parabola to first/last 3 points
 - \(q_0 = p_k\)
 - \(q_1 = p_{k+1}\)
 - \(t_0 = 0.5(p_{k+1} - p_{k-1})\)
 - \(t_1 = 0.5(p_{k+2} - p_k)\)

B-Splines

- Basis splines: use the data at \(p=[p_{i-2} p_{i-1} p_i p_{i+1}]^T\)
 - to define curve only between \(p_{i-1}\) and \(p_i\)
 - Allows us to apply more continuity conditions to each segment
 - For cubics, we can have continuity of function, first and second derivatives at join points
 - Cost is 3 times as much work for curves
 - Add one new point each time rather than three
 - For surfaces, we do 9 times as much work
Splines and Basis

• If we examine the cubic B-spline from the perspective of each control (data) point, each interior point contributes (through the blending functions) to four segments.
• We can rewrite \(p(u) \) in terms of the data points as

\[
p(u) = \sum_{i=1}^{m-1} B_i(u)p_i
\]
defining the basis functions \(\{B_i(u)\} \)

B-spline Blending Functions

- \(B_{1,1}(t) \): a step function that is 1 in the interval
- \(B_{1,2}(t) \): spans two intervals and is a piecewise linear function that goes from 0 to 1 (and back)
- \(B_{1,3}(t) \): spans three intervals and is a piecewise quadratic that grows from 0 to 1/4, then up to 3/4 in the middle of the second interval, back to 1/4, and back to 0
- \(B_{1,4}(t) \): a cubic that spans four intervals growing from 0 to 1/6 to 2/3, then back to 1/6 and to 0

B-spline Blending Functions for 2nd Degree Splines

• Note: can’t define a polynomial with these properties (both 0 and non-zero for ranges)
• Idea: subdivide the parameter space into intervals and build a piecewise polynomial
 - Each interval gets different polynomial function

Generalizing Splines

• We can extend to splines of any degree
• Data and conditions do not have to be given at equally spaced values (the knots)
 - Nonuniform and uniform splines
 - Can have repeated knots
 - Can force spline to interpolate points
• Cox-deBoor recursion gives method of evaluation

B-splines: Cox-deBoor Recursion

• Cox-deBoor Algorithm: defines the blending functions for spline curves (not limited to deg 3)
 - curves are weighted avgs of lower degree curves
• Let \(B_{i,d}(t) \) denote the \(i \)-th blending function for a B-spline or degree \(d \), then:

\[
B_{i,d}(t) = \begin{cases}
1, & \text{if } t_i \leq t < t_{i+1} \\
0, & \text{otherwise}
\end{cases}
\]

\[
B_{i,d}(t) = \frac{t-t_i}{t_{i+d}-t_i} B_{i,d-1}(t) + \frac{t_{i+d+1}-t}{t_{i+d+1}-t_{i+1}} B_{i+1,d-1}(t)
\]

NURBS

• Nonuniform Rational B-Spline curves and surfaces add a fourth variable \(w \) to \(x,y,z \)
 - Can interpret as weight to give more importance to some control data
 - Can also interpret as moving to homogeneous coordinate
• Requires a perspective division
 - NURBS act correctly for perspective viewing
• Quadrics are a special case of NURBS
NURBS

- At the core of several modern CAD systems - I-DEAS, Pro/E, Alpha 1
- Describes analytic and freeform shapes
- Accurate and efficient evaluation algorithms
- Invariant under affine and perspective transformations

Rendering Curves

Objectives

- Introduce methods to draw curves - Approximate with lines - Subdivision
- Derive the recursive method for evaluation of Bezier curves
- Learn how to convert all polynomial data to data for Bezier polynomials

Evaluating Polynomials

- Simplest method to render a polynomial curve is to evaluate the polynomial at many points and form an approximating polyline
- For surfaces we can form an approximating mesh of triangles or quadrilaterals
- Use Horner’s method to evaluate polynomials

Evaluating Polynomials

\[p(u) = c_0 + u(c_1 + uc_2 + uc_3) \]
- 3 multiplications/evaluation for cubic

The de Casteljau Algorithm

Basic case, with two points:
- Plotting a curve via repeated linear interpolation
 - Given \(p_0, p_1, \ldots \) a sequence of control points
 - Simple case: Mapping a parameter \(u \) to the line \(\overline{p_0p_1} \)
- \(p(u) = (1-u)p_0 + up_1 \) for \(0 \leq u \leq 1 \)

The de Casteljau Algorithm

- The complete solution from the algorithm for three iterations:
 \[p_{01}(u) = (1-u)p_0 + up_1 \]
 \[p_{11}(u) = (1-u)p_1 + up_2 \]
 \[p(u) = (1-u)p_{01}(u) + up_{11}(u) \]
The de Casteljau Algorithm

- The solution after four iterations:

\[p_0, p_1, p_2, p_3, p_4, p_5, p_6, p_7, p_8, p_9, p_{10}, p_{11}, p_{12} \]

\[p_{i0}(t) = (1-t)p_{i-1} + tp_i \]

\[p_{ir}(t) = (1-t)p_{i(r-1)} + tp_{i+1}(r-1) \]

Then \(p_{i0}(t) \) is the point with parameter value \(t \) on the Bézier curve defined by the \(p_i \)’s.

De Casteljau: Arc Segment Animation

De Casteljau: Cubic Curve Animation

Cubic Bezier Curve

- Multiplying it all out gives

\[p(u) = (1-u)^3p_0 + 3u(1-u)^2p_1 + 3u^2(1-u)p_2 + u^3p_3 \]

\[0 \leq u \leq 1 \]

Subdivision

- Common in many areas of graphics, CAD, CAGD, vision
- Basic idea
 - primitives defined by control polygons
 - set of control points is not unique
 - more than one way to compute a curve
- subdivision refines representation of an object by introducing more control points
- Allows for local modification
- Subdivide to pixel resolution
Bézier Curve Subdivision

- Subdivision allows display of curves at different/adaptive levels of resolution
- Rendering systems (OpenGL, ActiveX, etc) only display polygons or lines
- Subdivision generates the lines/facets that approximate the curve/surface
 - output of subdivision sent to renderer

deCasteljau Recursion

- We can use the convex hull property of Bezier curves to obtain an efficient recursive method that does not require any function evaluations
 - Uses only the values at the control points
- Based on the idea that “any polynomial and any part of a polynomial is a Bezier polynomial for properly chosen control data”

Bézier Curve Subdivision

- Observe subdivision:
 - does not affect the shape of the curve
 - partitions one curve into several curved pieces with (collectively) the same shape

Splitting a Cubic Bezier

\[\begin{align*}
\mathbf{p}_0, \mathbf{p}_1, \mathbf{p}_2, \mathbf{p}_3 & \text{ determine a cubic Bezier polynomial and its convex hull} \\
\mathbf{p}_0 &= \mathbf{l}_0 \\
\mathbf{r}_3 &= \mathbf{r}_3 \end{align*} \]

Consider left half \(l(u) \) and right half \(r(u) \)

Convex Hulls

\[\begin{align*}
\{\mathbf{l}_0, \mathbf{l}_1, \mathbf{l}_2, \mathbf{l}_3\} \text{ and } \{\mathbf{r}_0, \mathbf{r}_1, \mathbf{r}_2, \mathbf{r}_3\} \text{ each have a convex hull that is closer to } \mathbf{p}(u) \text{ than the convex hull of } \{\mathbf{p}_0, \mathbf{p}_1, \mathbf{p}_2, \mathbf{p}_3\} \\
\text{This is known as the variation diminishing property.} \\
The polyline from } \mathbf{l}_0 \text{ to } \mathbf{l}_3 \text{ to } \mathbf{r}_1 \text{ to } \mathbf{r}_3 \text{ is an approximation to } \mathbf{p}(u). \text{ Repeating recursively we get better approximations.} \]
Drawing Parametric Curves

Two basic ways:
- **Iterative evaluation** of \(x(t), y(t), z(t) \) for incrementally spaced values of \(t \)
 - can’t easily control segment lengths and error
- **Recursive Subdivision**
 via de Casteljau, that stops when control points get sufficiently close to the curve
 - i.e. when the curve is nearly a straight line

FYI: Computing the Distance from a Point to a Line

- Line is defined with two points
- Basic idea:
 - Project point \(P \) onto the line
 - Find the location of the projection

\[
d(P, L) = \frac{(y_0 - y_1)x + (x_1 - x_0)y + (x_0y_1 - x_1y_0)}{\sqrt{(x_1 - x_0)^2 + (y_1 - y_0)^2}}
\]

Bezier and Spline Surfaces

Issues with 3D “mesh” formats

- Easy to acquire
- Easy to render
- Harder to model with
- Error prone
 - split faces, holes, gaps, etc
BRep Data Structures

• Winged-Edge Data Structure (Weiler)
• Vertex
 - n edges
• Edge
 - 2 vertices
 - 2 faces
• Face
 - m edges

Biparametric Surfaces

• Biparametric surfaces
 - A generalization of parametric curves
 - 2 parameters: s, t (or u, v)
 - Two parametric functions

 Parametric Surfaces

• Surfaces require 2 parameters
 \[x = x(u, v) \]
 \[y = y(u, v) \]
 \[z = z(u, v) \]
 \[p(u, v) = [x(u, v), y(u, v), z(u, v)]^T \]
• Want same properties as curves:
 - Smoothness
 - Differentiability
 - Ease of evaluation

Parametric Planes

point-vector form

\[p(u, v) = p_0 + uq + vr \]
\[n = q \times r \]
three-point form

\[q = p_1 - p_0 \]
\[r = p_2 - p_0 \]

Parametric Sphere

\[x(u, v) = r \cos \theta \sin \phi \]
\[y(u, v) = r \sin \theta \sin \phi \]
\[z(u, v) = r \cos \phi \]
\[360 \geq \theta \geq 0 \]
\[180 \geq \phi \geq 0 \]
\[\theta \text{ constant: circles of constant longitude} \]
\[\phi \text{ constant: circles of constant latitude} \]

differentiate to show \[n = \vec{p} \]
Normals

We can differentiate with respect to u and v to obtain the normal at any point p:

$$\frac{\partial p(u,v)}{\partial u} = \begin{bmatrix} \frac{\partial p_x(u,v)}{\partial u} \\ \frac{\partial p_y(u,v)}{\partial u} \\ \frac{\partial p_z(u,v)}{\partial u} \end{bmatrix}$$

$$\frac{\partial p(u,v)}{\partial v} = \begin{bmatrix} \frac{\partial p_x(u,v)}{\partial v} \\ \frac{\partial p_y(u,v)}{\partial v} \\ \frac{\partial p_z(u,v)}{\partial v} \end{bmatrix}$$

Tangents in u and v directions:

$$n = \frac{\partial p(u,v)}{\partial u} \times \frac{\partial p(u,v)}{\partial v}$$

Bicubic Surfaces

- Recall the 2D curve: $Q(s) = G \cdot M \cdot S$
 - G: Geometry Matrix
 - M: Basis Matrix
 - S: Polynomial Terms $[s^3 \ s^2 \ s \ 1]$

- For 3D, we allow the points in G to vary in 3D along t as well:

$$Q(s,t) = \begin{bmatrix} G_1(t) & G_2(t) & G_3(t) & G_4(t) \end{bmatrix} \cdot M \cdot S$$

Observations About Bicubic Surfaces

- For a fixed t_1, $Q(s,t_1)$ is a curve
- Gradually incrementing t_1 to t_2, we get a new curve
- The combination of these curves is a surface
- $G_i(t)$ are 3D curves

Bicubic Surfaces

- Each $G_i(t)$ is $G_i(t) = G_i \cdot M \cdot T$, where

$$G_i = \begin{bmatrix} g_{i1} & g_{i2} & g_{i3} & g_{i4} \end{bmatrix}$$

- Transposing $G_i(t)$, we get

$$G_i(t) = T^T \cdot M^T \cdot G_i^T$$

$$= T^T \cdot M^T \cdot \begin{bmatrix} g_{i1} & g_{i2} & g_{i3} & g_{i4} \end{bmatrix}^T$$

- Substituting $G_i(t)$ into $Q(s) = G \cdot M \cdot S$ we get $Q(s, t)$
- The g_{ij}, etc. are the control points for the Bicubic surface patch:

$$Q(s,t) = T^T \cdot M^T \cdot \begin{bmatrix} g_{11} & g_{21} & g_{31} & g_{41} \\ g_{12} & g_{22} & g_{32} & g_{42} \\ g_{13} & g_{23} & g_{33} & g_{43} \\ g_{14} & g_{24} & g_{34} & g_{44} \end{bmatrix} \cdot M \cdot S$$
Bicubic Surfaces

\[Q(s,t) = T^T \cdot M^T \cdot G \cdot M \cdot S \quad 0 \leq s,t \leq 1 \]

\[x(s,t) = T^T \cdot M^T \cdot G_x \cdot M \cdot S \]
\[y(s,t) = T^T \cdot M^T \cdot G_y \cdot M \cdot S \]
\[z(s,t) = T^T \cdot M^T \cdot G_z \cdot M \cdot S \]

Blending Functions

\[\mathbf{p}(u,v) = \sum_{i=0}^{3} \sum_{j=0}^{3} b_i(u)b_j(v)\mathbf{p}_{ij} \]

Each \(b_i(u)b_j(v) \) is a blending function

Shows that we can build and analyze surfaces from our knowledge of curves

A point on the patch is a weighted sum of the control points

Beziers Blending Functions

\[b(u) = \begin{cases}
(1-u)^3 & 0 \\ 3u(1-u)^2 & 0 \\ u^3 & 0
\end{cases} \]

Note that all zeros are at 0 and 1 which forces the functions to be smooth over (0,1)

Beziers Patches

Using same data array \(\mathbf{p}=[\hat{p}_i] \) as with interpolating form

\[\hat{p}(u,v) = \sum_{i=0}^{3} \sum_{j=0}^{3} b_i(u)b_j(v)\hat{p}_{ij} = u^t M u \vec{p} \]

Patch lies in convex hull
Bezier Patch Matrix Form

\[
P(u, v) = u^T M_B P M_B^T v
\]

\[
= \begin{bmatrix} 1 & u & u^2 \end{bmatrix} \begin{bmatrix}
0 & 0 & 0 & \psi_0 & \psi_1 & \psi_2 & \psi_3 \\
-3 & 3 & 0 & 0 & 0 & 0 & 0 \\
3 & -6 & 3 & 0 & 0 & 0 & 0 \\
-1 & 3 & -3 & 1 & 0 & 0 & 0 \\
\end{bmatrix} \begin{bmatrix}
1 & 0 & 0 & 0 \\
-3 & 3 & 0 & 0 \\
3 & -6 & 3 & 0 \\
-1 & 3 & -3 & 1 \\
\end{bmatrix} \begin{bmatrix} \psi_0 & \psi_1 & \psi_2 & \psi_3 \end{bmatrix}
\]

Features of Bicubic Bezier Patch

- Interpolates 4 corner control points
- 4 edges are Bezier curves
- Lies within convex hull of control points
- Normal at 4 corners from nearby CPs

Bézier Surfaces

- \(C^0 \) and \(G^0 \) continuity can be achieved between two patches by setting the 4 boundary control points to be equal
- \(G^1 \) continuity achieved when cross-wise CPs are co-linear

Bézier Surfaces: Example Utah Teapot

- Utah Teapot modeled with 306 3D control points that define 32 Bézier patches with \(G^1 \) continuity

Faceting

- Faceting
Defining the Triangles

// This assumes that the vertices are in a 2D array, verts(i,j)
// num_u & num_v are the number of points in u and v directions

for i = 0 to (num_u - 2)
 for j = 0 to (num_v - 2)
 triangle0 = (verts[i,j], verts[i+1,j], verts[i+1,j+1])
 triangle1 = (verts[i,j], verts[i+1,j+1], verts[i,j+1])

Faceting Overview

• Double loop that increments through the u and v parameters
 - Values between 0 and 1
• For each (u,v) pair calculate 3D point on patch. Keep track of linear index.
• This produces a 2-D array of 3D points on the patch and their indices to the linear array
• Define triangles that tessellate the patch

Normals

• For rendering we need the normals if we want to shade
 - Can compute from parametric equations

\[
\mathbf{n} = \frac{\partial \mathbf{p}(u,v)}{\partial u} \times \frac{\partial \mathbf{p}(u,v)}{\partial v}
\]
 - Can approximate by averaging triangle normals

Utah Teapot

• Most famous data set in computer graphics
• Widely available as a list of 306 3D vertices and the indices that define 32 Bezier patches

Bezier Surface: Example

• Increased facet resolution
• Rendered

Drawing Parametric Surfaces

• Usually done “patch by patch”
• Two choices
 - Draw/render directly from the parametric description
 - Approximate the surface with a polygon mesh, then draw/render the mesh
Patch to Polygon Conversion

Two methods:

• **Object Space Conversion**
 - Techniques
 - Iterative evaluation
 - Uniform subdivision
 - Non-uniform subdivision
 - Resolution: depends on object space

• **Image Space Conversion**
 - Resolution: depends on pixels and screen

Object Space Conversion: Uniform Subdivision

Basic Procedure

• Cut parameter space into equal parts
• Find new points on the surface
• Recurse/Repeat “until done”
• Split squares into triangles
• Render triangles

Object Space Conversion: Non-Uniform Subdivision

• Basic idea
 - More facets in areas of high curvature
 - Use change in normals to surface to assess curvature
 - More derivatives
 - Break patch into sub-patches based on curvature changes

Image Space Conversion

• Idea: control subdivision based on screen criteria
 - Minimum pixel area
 - Stop when patch is basically one pixel
 - Screen flatness
 - Stop when patch converges to a polygon
 - Screen flatness of silhouette edges
 - Stop when edge is straight or size of pixel

How do I know if I’ve found a silhouette edge?

• If the viewing ray is tangent to the surface at the point it hits the surface!

\[N(X) \cdot L = 0 \]

- Where \(N \) is the normal at the point where \(L \), the line of sight, hits the surface
Modified Gouraud Shading
(Verteex Shader)

```
flat out vec3 vColor;
vec3 ambient = ambientProduct;
// If normal pointing away from the eye, flip it
if (dot(E,N) < 0.0) N = vec3(-1,-1,-1) * N;
float diffuseTerm = max( dot(L, N), 0.0 );
vec3 diffuse = diffuseTerm*diffuseProduct;
float specularTerm = pow( max(dot(N, H), 0.0), shininess );
vec3 specular = specularTerm * specularProduct;
if (dot(L, N) < 0.0 ) specular = vec3(0.0, 0.0, 0.0);
gl_Position = projectionMatrix * vec4(pos, 1.0);

vColor = min(ambient + diffuse + specular, 1.0);
```

Suggestions for HW7

• Write a function that takes control points and a (u,v) pair and returns a 3D point on patch
• Use formula to compute point
• Compute an array of 3D points that lie on the patch with a double loop that increments through u and v, from 0 to 1
• Iterate over integers!
• This would be an n x m array, where n is the number of points in the u direction and m is the number in the v direction

Suggestions for HW7

• Display with gl.POINTS to test
• Use a double loop to iterate through i & j = 0 to n-2 & 0 to m-2
• For each (i, j) pair you define two triangles. The first has vertices ([i,j], [i+1, j], [i, j+1]). The 2nd triangle is defined with vertices ([i+1, j], [i+1, j+1], [i, j+1]).
• Now you have a mesh defined like an SMF model. Modify your HW6 code to render it.

Suggestions for HW7

• Use flat qualifier to flat-shade mesh
• Implement the interface that allows the user to change n and m (the resolution of the mesh)
• When these values are changed by the user, you'll need to regenerate the mesh
• Flip normals that face away from the eye point, so both sides of the mesh are shaded