Objectives

- Introduce types of curves and surfaces
 - Explicit
 - Implicit
 - Parametric
 - Strengths and weaknesses
- Discuss Modeling and Approximations
 - Conditions
 - Stability

Escaping Flatland

- Until now we have worked with flat entities such as lines and flat polygons
 - Fit well with graphics hardware
 - Mathematically simple
- But the world is not composed of flat entities
 - Need curves and curved surfaces
 - May only have need at the application level
 - Implementation can render them approximately with flat primitives

Modeling with Curves

- Inverse with curves and surfaces
- Need curves and curved surfaces
- May only have need at the application level
- Implementation can render them approximately with flat primitives

What Makes a Good Representation?

- There are many ways to represent curves and surfaces
- Want a representation that is
 - Stable
 - Smooth
 - Easy to evaluate
 - Must we interpolate or can we just come close to data?
 - Do we need derivatives?

Explicit Representation

- Most familiar form of curve in 2D
 \(y = f(x) \)
- Cannot represent all curves
 - Vertical lines
 - Circles
- Extension to 3D
 - \(z = f(x,y) \) defines a surface
Implicit Representation

- Two dimensional curve(s)
 \[g(x,y) = 0 \]
- Much more robust
 - All lines \(ax + by + c = 0 \)
 - Circles \(x^2 + y^2 = r^2 \)
- Three dimensions \(g(x,y,z) = 0 \) defines a surface
 - Intersect two surfaces to get a curve
- In general, we cannot exactly solve for points that satisfy the equation

Algebraic Surface

\[\sum_{i,j,k} a_{ijk} x^i y^j z^k \]

- Quadratic surface \(2 \geq i + j + k \)
- At most 10 terms
- Can solve intersection with a ray by reducing problem to solving quadratic equation

Parametric Curves

- Separate equation for each spatial variable
 \[x = x(u) \]
 \[y = y(u) \]
 \[z = z(u) \]
- For \(u_{\text{max}} \geq u \geq u_{\text{min}} \) we trace out a curve in two or three dimensions
- Want functions which are easy to evaluate
 - Computation of normals
- Want functions which are easy to differentiate
 - Connecting pieces (segments)
- Want functions which are smooth

Selecting Functions

- Usually we can select “good” functions
 - not unique for a given spatial curve
 - Approximate or interpolate known data
 - Want functions which are easy to evaluate
 - Want functions which are easy to differentiate
 - Computation of normals
 - Connecting pieces (segments)
- Want functions which are smooth

Parametric Lines

We can normalize \(u \) to be over the interval \((0,1)\)
- Line connecting two points \(p_0 \) and \(p_t \)
 \[p(u) = (1-u)p_0 + up_t \]
 \[p(0) = p_0 \]
 \[p(1) = p_t \]
- Ray from \(p_0 \) in the direction \(d \)
 \[p(u) = p_0 + ud \]
 \[p(0) = p_0 \]
 \[p(1) = p_0 + d \]

Curve Segments

- After normalizing \(u \), each curve is written
 \[p(u) = [x(u), y(u), z(u)]^T, \quad 1 \geq u \geq 0 \]
- In classical numerical methods, we design a single global curve
- In computer graphics and CAD, it is better to design small connected curve segments

Parametric Polynomial Curves

- \(x(u) = \sum_{i=0}^{N} c_{xi}u^i \)
- \(y(u) = \sum_{j=0}^{M} c_{yj}u^j \)
- \(z(u) = \sum_{k=0}^{K} c_{zk}u^k \)

- If \(N=M=K \), we need to determine \(3(N+1) \) coefficients
- Equivalently, we need \(3(N+1) \) independent conditions
- Noting that the curves for \(x, y \), and \(z \) are independent, we can define each independently in an identical manner
- We will use the form where \(p \) can be any of \(x, y, \) or \(z \)

\[
\begin{align*}
 x(u) &= \sum_{i=0}^{N} c_{xi}u^i \\
y(u) &= \sum_{j=0}^{M} c_{yj}u^j \\
z(u) &= \sum_{k=0}^{K} c_{zk}u^k
\end{align*}
\]

Why Polynomials

- Easy to evaluate
- Continuous and differentiable everywhere
- Must worry about continuity at join points including continuity of derivatives

Cubic Parametric Polynomials

- \(N=M=L=3 \), gives balance between ease of evaluation and flexibility in design
- Four coefficients to determine for each of \(x, y \), and \(z \)
- Seek four independent conditions for various values of \(u \) resulting in 4 equations in 4 unknowns for each of \(x, y \), and \(z \)
- Conditions are a mixture of continuity requirements at the join points and conditions for fitting the data

\[
\begin{align*}
p(u) &= \sum_{i=0}^{3} c_{pi}u^i
\end{align*}
\]

Cubic Polynomial Surfaces

- \(p(u,v) = [x(u,v), y(u,v), z(u,v)]^T \)
- \(p(u,v) = \sum_{i=0}^{3} \sum_{j=0}^{3} c_{ij}u^i v^j \)
- \(p \) is any of \(x, y \), or \(z \)
- Need 48 coefficients (3 independent sets of 16) to determine a surface patch

Objectives

- Introduce the types of curves
 - Interpolating
 - Hermite
 - Bezier
 - B-spline
- Analyze their performance
Matrix-Vector Form

\[p(u) = \sum_{k=0}^{3} c_k u^k \]

Define \(c = \begin{bmatrix} c_0 \\ c_1 \\ c_2 \\ c_3 \end{bmatrix} \) \(u = \begin{bmatrix} 1 \\ u \\ u^2 \\ u^3 \end{bmatrix} \)

then \(p(u) = u^T c = c^T u \)

Interpolating Curve

Given four data (control) points \(p_0, p_1, p_2, p_3 \)
determine cubic \(p(u) \) which passes through them

Must find \(c_0, c_1, c_2, c_3 \)

Special case of the Lagrange polynomial interpolation

Interpolating Multiple Segments

Use \(p = [p_0, p_1, p_2, p_3]^T \)

Get continuity at join points but not continuity of derivatives

Parametric and Geometric Continuity

- We can require the derivatives of \(x, y, \) and \(z \) to each be continuous at join points (parametric continuity)
- Alternately, we can only require that the tangents of the resulting curve be continuous (geometry continuity)
- The latter gives more flexibility since we need to satisfy only two conditions rather than three at each join point

Parametric Continuity

- **Continuity** (recall from the calculus):
 - Two curves are \(C^i \) continuous at a point \(p \) iff the \(i \)-th derivatives of the curves are equal at \(p \)

Other Types of Curves and Surfaces

- How can we get around the limitations of the interpolating form
 - Lack of smoothness
 - Discontinuous derivatives at join points
- We have four conditions (for cubics) that we can apply to each segment
 - Use them other than for interpolation
 - Need only come close to the data
Hermite Form

Use two interpolating conditions and two derivative conditions per segment.
Ensures continuity and first derivative continuity between segments.

Example

- Here the p and q have the same tangents at the ends of the segment but different derivatives.
- Generate different Hermite curves.
- This technique is used in drawing applications.

Objectives

- Introduce Bezier curves.
- Derive the required matrices.
- Introduce the B-spline and compare it to the standard cubic Bezier.

Bezier’s Idea

- In graphics and CAD, we do not usually have derivative data.
- Bezier suggested using the same 4 data points as with the cubic interpolating curve to approximate the derivatives in the Hermite form.

Computing Derivatives

\[p'(0) = \frac{p_1 - p_0}{1/3} \]
\[p'(1) = \frac{p_2 - p_1}{1/3} \]

Slope: \[p'(0) \] located at \(u=1/3 \)
Slope: \[p'(1) \] located at \(u=2/3 \)
Equations

Interpolating conditions are the same

\[p(0) = p_0 = c_0 \]
\[p(1) = p_3 = c_0 + c_1 + c_2 + c_3 \]

Approximating derivative conditions

\[p'(0) = 3(p_1 - p_0) = c_1 \]
\[p'(1) = 3(p_3 - p_2) = c_1 + 2c_2 + 3c_3 \]

Solve four linear equations for \(c = M_B p \)

Beziers Matrix

\[
\mathbf{M}_B = \begin{bmatrix}
1 & 0 & 0 & 0 \\
-3 & 3 & 0 & 0 \\
3 & -6 & 3 & 0 \\
-1 & 3 & -3 & 1 \\
\end{bmatrix}
\]

\[p(u) = u^T \mathbf{M}_B p = \mathbf{b}(u)^T p \]

Blending Functions

\[
\mathbf{b}(u) = \begin{bmatrix}
(1-u)^3 \\
3u(1-u)^2 \\
3u^2(1-u) \\
u^3
\end{bmatrix}
\]

Note that all zeros are at 0 and 1 which forces the functions to be smooth over (0,1)

Cubic Bezier Curve

\[p(u) = (1-u)^3p_0 + 3u(1-u)^2p_1 + 3u^2(1-u)p_2 + u^3p_3 \]

Bernstein Polynomials

- The blending functions are a special case of the Bernstein polynomials
 \[b_{kd}(u) = \frac{d!}{k!(d-k)!} u^k (1-u)^{d-k} \]
- These polynomials give the blending polynomials for any degree Bezier form
 - All zeros at 0 and 1
 - For any degree they all sum to 1
 - They are all between 0 and 1 inside (0,1)

General Form of Bezier Curve

\[\vec{p}(u) = \sum_{i=0}^{k} \vec{p}_{i+1} \binom{k}{i} (1-u)^{k-i} u^i \]
Convex Hull Property

- The properties of the Bernstein polynomials ensure that all Bezier curves lie within the convex hull of their control points.
- Hence, even though we do not interpolate all the data, we cannot be too far away.

Analysis

- Although the Bezier form is much better than the interpolating form, its derivatives are not continuous at join points.
- Can we do better?
 - Go to higher order Bezier
 - More work
 - Derivative continuity still only approximate
 - Supported by OpenGL
 - Apply different conditions
 - Tricky without letting order increase

B-Splines

- Basis splines: use the data at \(p_i = [p_{i-2}, p_{i-1}, p_i, p_{i+1}]^T \) to define curve only between \(p_{i-1} \) and \(p_{i+1} \).
- Allows us to apply more continuity conditions to each segment.
- For cubics, we can have continuity of function, first and second derivatives at join points.
- Cost is 3 times as much work for curves (Add one new point each time rather than three)
- For surfaces, we do 9 times as much work.

Splines and Basis

- If we examine the cubic B-spline from the perspective of each control (data) point, each interior point contributes (through the blending functions) to four segments.
- We can rewrite \(p(u) \) in terms of the data points as
 \[
 p(u) = \sum_{i=0}^{m-1} B_i(u) p_i
 \]
 defining the basis functions \(\{B_i(u)\} \)

B-splines: Cox-deBoor Recursion

- Cox-deBoor Algorithm: defines the blending functions for spline curves (not limited to deg 3)
 - curves are weighted avgs of lower degree curves
- Let \(B_{i,k}(t) \) denote the \(i \)-th blending function for a B-spline of degree \(d \), then:

 \[
 B_{i,k}(t) = \begin{cases}
 1, & \text{if } t_{i+k} \leq t < t_{i+k+1} \\
 0, & \text{otherwise} \\
 \end{cases}
 \]

 \[
 B_{i,k}(t) = \frac{t - t_{i+k}}{t_{i+k+1} - t_{i+k}} B_{i+k,i+1}(t) + \frac{t_{i+k+1} - t}{t_{i+k+1} - t_{i+k}} B_{i+k+1,i+1}(t)
 \]

B-spline Blending Functions

- \(B_{i,0}(t) \): a step function that is 1 in the interval
- \(B_{i,0}(t) \): spans two intervals and is a piecewise linear function that goes from 0 to 1 (and back)
- \(B_{i,3}(t) \): spans three intervals and is a piecewise quadratic that grows from 0 to 1/4, then up to 3/4 in the middle of the second interval, back to 1/4, and back to 0
- \(B_{i,5}(t) \): a cubic that spans four intervals growing from 0 to 1/6 to 2/3, then back to 1/6 and to 0
B-spline Blending Functions for 2nd Degree Splines

- Note: can’t define a polynomial with these properties (both 0 and non-zero for ranges)
- Idea: subdivide the parameter space into intervals and build a piecewise polynomial
 - Each interval gets different polynomial function

Generalizing Splines

- We can extend to splines of any degree
- Data and conditions do not have to be given at equally spaced values (the knots)
 - Nonuniform and uniform splines
 - Can have repeated knots
 - Can force spline to interpolate points
- Cox-deBoor recursion gives method of evaluation

NURBS

- Nonuniform Rational B-Spline curves and surfaces add a fourth variable w to x,y,z
 - Can interpret as weight to give more importance to some control data
 - Can also interpret as moving to homogeneous coordinate
- Requires a perspective division
 - NURBS act correctly for perspective viewing
 - Quadrics are a special case of NURBS

Objectives

- Introduce methods to draw curves
 - Approximate with lines
 - Subdivision
- Derive the recursive method for evaluation of Bezier curves
- Learn how to convert all polynomial data to data for Bezier polynomials

Evaluating Polynomials

- Simplest method to render a polynomial curve is to evaluate the polynomial at many points and form an approximating polyline
- For surfaces we can form an approximating mesh of triangles or quadrilaterals
- Use Horner’s method to evaluate polynomials
 \[p(u)=c_0+u(c_1+uc_2+u(c_3+uc_4)) \]
 - 3 multiplications/evaluation for cubic
Basic case, with two points:

- Plotting a curve via repeated linear interpolation
 - Given \(\{p_0, p_1, \ldots \} \)
 - a sequence of control points
 - Simple case: Mapping a parameter \(u \) to the line \(p_0, p_1 \)

\[
p(u) = (1 - u)p_0 + up_1 \quad \text{for } 0 \leq u \leq 1
\]

The de Casteljau Algorithm

• The complete solution from the algorithm for three iterations:

\[
\begin{align*}
p_0(u) &= (1 - u)p_0 + up_1 \\
p_1(u) &= (1 - u)p_1 + up_2 \\
p(u) &= (1 - u)p_0(u) + up_1(u)
\end{align*}
\]

The de Casteljau Algorithm

• Input: \(p_0, p_1, p_2, \ldots, p_n \in \mathbb{R}^3, t \in \mathbb{R} \)
• Iteratively set:

\[
p_{i,r}(t) = (1 - t)p_{i,r-1}(t) + tp_{i+1,r-1}(t)
\]

Then \(p_{0,n}(t) \) is the point with parameter value \(t \) on the Bézier curve defined by the \(p_i \)’s

De Casteljau: Arc Segment Animation

De Casteljau: Cubic Curve Animation
Cubic Bezier Curve

- Multiplying it all out gives

\[p(u) = (1-u)^3p_0 + 3u(1-u)^2p_1 + 3u^2(1-u)p_2 + u^3p_3 \]

Issues with 3D “mesh” formats

- Easy to acquire
- Easy to render
- Harder to model with
- Error prone
 - split faces, holes, gaps, etc

BRep Data Structure

- Vertex structure
 - X,Y,Z point
 - Pointers to n coincident edges
- Face structure
 - Pointers to m edges

BRep Data Structures

- Winged-Edge Data Structure (Weiler)
- Vertex
 - n edges
- Edge
 - 2 vertices
 - 2 faces
- Face
 - m edges

Biparametric Surfaces

- Biparametric surfaces
 - A generalization of parametric curves
 - 2 parameters: s, t (or u, v)
 - Two parametric functions
Parametric Surfaces

- Surfaces require 2 parameters
 \[x = x(u, v) \]
 \[y = y(u, v) \]
 \[z = z(u, v) \]
 \[p(u, v) = [x(u, v), y(u, v), z(u, v)]^T \]

- Want same properties as curves:
 - Smoothness
 - Differentiability
 - Ease of evaluation

Parametric Planes

- Point-vector form
 \[p(u, v) = p_0 + uq + vr \]

- Three-point form
 \[q = p_1 - p_0 \]
 \[r = p_2 - p_0 \]

Parametric Sphere

- \[x(u, v) = r \cos \theta \sin \phi \]
- \[y(u, v) = r \sin \theta \sin \phi \]
- \[z(u, v) = r \cos \phi \]

- \[360 \geq \theta \geq 0 \]
- \[180 \geq \phi \geq 0 \]

- \(\theta \) constant: circles of constant longitude
- \(\phi \) constant: circles of constant latitude

- Differentiate to show \[n = \frac{\partial p}{\partial u} \times \frac{\partial p}{\partial v} \]

Normals

- We can differentiate with respect to \(u \) and \(v \) to obtain the normal at any point \(p \)

\[\frac{\partial p(u, v)}{\partial u} = \begin{bmatrix} \frac{\partial p_1(u, v)}{\partial u} \\ \frac{\partial p_2(u, v)}{\partial u} \\ \frac{\partial p_3(u, v)}{\partial u} \end{bmatrix} \]

\[\frac{\partial p(u, v)}{\partial v} = \begin{bmatrix} \frac{\partial p_1(u, v)}{\partial v} \\ \frac{\partial p_2(u, v)}{\partial v} \\ \frac{\partial p_3(u, v)}{\partial v} \end{bmatrix} \]

Bicubic Surfaces

- Recall the 2D curve: \[Q(s) = G \cdot M \cdot S \]
 - \(G \): Geometry Matrix
 - \(M \): Basis Matrix
 - \(S \): Polynomial Terms \[[s^3 \ s^2 \ s^1 \ s^0] \]

- For 3D, we allow the points in \(G \) to vary in 3D along \(t \) as well:

\[Q(s, t) = \begin{bmatrix} G_1(t) & G_2(t) & G_3(t) & G_4(t) \end{bmatrix} \cdot M \cdot S \]
Observations About Bicubic Surfaces

- For a fixed t_1, $Q(s, t_1)$ is a curve.
- Gradually incrementing t_1 to t_2, we get a new curve.
- The combination of these curves is a surface.
- $G_i(t)$ are 3D curves.

Bicubic Surfaces

- Each $G_i(t)$ is $G_i(t) = G_i \cdot M \cdot T$, where
 $$G_i = \begin{bmatrix} g_{i1} & g_{i2} & g_{i3} & g_{i4} \end{bmatrix}$$
- Transposing $G_i(t)$, we get
 $$G_i(t) = T^T \cdot M^T \cdot G_i^T = T^T \cdot M^T \cdot \begin{bmatrix} g_{i1} & g_{i2} & g_{i3} & g_{i4} \end{bmatrix}^T$$

Bicubic Surfaces

- Substituting $G_i(t)$ into $Q(s, t)$, we get $Q(s, t)$.
- The g_{i1}, etc. are the control points for the Bicubic surface patch:
 $$Q(s, t) = T^T \cdot M^T \cdot \begin{bmatrix} g_{11} & g_{21} & g_{31} & g_{41} \\ g_{12} & g_{22} & g_{32} & g_{42} \\ g_{13} & g_{23} & g_{33} & g_{43} \\ g_{14} & g_{24} & g_{34} & g_{44} \end{bmatrix} \cdot M \cdot S$$

Bézier Patches

- Bézier Surfaces (similar definition)
 $$x(s, t) = T^T \cdot M_B^T \cdot G_B \cdot M_B \cdot S$$
 $$y(s, t) = T^T \cdot M_B^T \cdot G_B \cdot M_B \cdot S$$
 $$z(s, t) = T^T \cdot M_B^T \cdot G_B \cdot M_B \cdot S$$

Blending Functions

- Blending Functions
 $$p(u, v) = \sum_{i=0}^{3} \sum_{j=0}^{3} b_i(u) b_j(v) p_{ij}$$
 Each $b_i(u)b_j(v)$ is a blending function.
 Shows that we can build and analyze surfaces from our knowledge of curves.
 A point on the patch is a weighted sum of the control points.
Beziers Patches

Using same data array \(P = [p_{ij}] \) as with interpolating form

\[
\tilde{p}(u,v) = \sum_{i=0}^{3} \sum_{j=0}^{3} b_i(u)b_j(v)\tilde{p}_{ij} = u^3 M_1 P M_0^T v
\]

Patch lies in convex hull

Bezier Blending Functions

\[
b(u) = \begin{bmatrix}
(1 - u)^3 \\
3u(1 - u)^2 \\
3u^2(1 - u) \\
u^3
\end{bmatrix}
\]

Note that all zeros are at 0 and 1 which forces the functions to be smooth over \((0,1)\)

Bézier Patches

- Expanding the summation

\[
\tilde{p}(u,v) = \sum_{i=0}^{3} \sum_{j=0}^{3} b_i(u)b_j(v)\tilde{p}_{ij} = b_0(u)b_0(v)\tilde{p}_{00} + b_0(u)b_1(v)\tilde{p}_{01} + b_0(u)b_2(v)\tilde{p}_{02} + b_0(u)b_3(v)\tilde{p}_{03} + b_0(u)b_0(v)\tilde{p}_{10} + \text{etc.}
\]

Features of Bicubic Bezier Patch

- Interpolates 4 corner control points
- 4 edges are Bezier curves
- Lies within convex hull of control points
- Normal at 4 corners from nearby CPs

Beziers Surfaces

- \(C^0 \) and \(G^0 \) continuity can be achieved between two patches by setting the 4 boundary control points to be equal
- \(G^1 \) continuity achieved when cross-wise CPs are co-linear
Bézier Surfaces: Example
Utah Teapot

• Utah Teapot modeled with 306 3D control points that define 32 Bézier patches with G^1 continuity.

Faceting

• Double loop that increments through the u and v parameters
 - Values between 0 and 1
• For each (u,v) pair calculate 3D point on patch. Keep track of linear index.
• This produces a 2-D array of 3D points on the patch and their indices to the linear array.
• Define triangles that tessellate the patch.

Defining the Triangles

```c
// This assumes that the vertices are in a 2D array, verts(i,j)
// num_u & num_v are the number of points in u and v directions
for i = 0 to (num_u − 2)
  for j = 0 to (num_v -2)
    triangle0 = (verts[i,j], verts[i+1,j], verts[i+1,j+1])
    triangle1 = (verts[i,j], verts[i+1,j+1], verts[i,j+1])
```

Normals

• For rendering we need the normals if we want to shade
 - Can compute from parametric equations
 $$
n = \frac{\partial \mathbf{p}(u,v)}{\partial u} \times \frac{\partial \mathbf{p}(u,v)}{\partial v}
$$
 - Can approximate by averaging triangle normals.
Utah Teapot

- Most famous data set in computer graphics
- Widely available as a list of 306 3D vertices and the indices that define 32 Bezier patches

Bezier Surface: Example

- Increased facet resolution
- Rendered

Drawing Parametric Surfaces

- Usually done “patch by patch”
- Two choices
 - Draw/render directly from the parametric description
 - Approximate the surface with a polygon mesh, then draw/render the mesh

Patch to Polygon Conversion

Two methods:
- **Object Space Conversion**
 - Techniques
 - Iterative evaluation
 - Uniform subdivision
 - Non-uniform subdivision
 - Resolution: depends on object space
- **Image Space Conversion**
 - Resolution: depends on pixels and screen

Object Space Conversion: Uniform Subdivision

Basic Procedure
- Cut parameter space into equal parts
- Find new points on the surface
- Recurse/Repeat “until done”
- Split squares into triangles
- Render triangles

Object Space Conversion: Non-Uniform Subdivision

- Basic idea
 - More facets in areas of high curvature
 - Use change in normals to surface to assess curvature
 - More derivatives
 - Break patch into sub-patches based on curvature changes
Image Space Conversion

- Idea: control subdivision based on screen criteria
 - Minimum pixel area
 - Stop when patch is basically one pixel
 - Screen flatness
 - Stop when patch converges to a polygon
 - Screen flatness of silhouette edges
 - Stop when edge is straight or size of pixel

How do I know if I’ve found a silhouette edge?

- If the viewing ray is tangent to the surface at the point it hits the surface!
 \[N(X) \cdot L = 0 \]
 - Where \(N \) is the normal at the point where \(L \), the line of sight, hits the surface

Silhouette Determination

\[N \cdot L = 0 \]

Brenner & Hughes, Brown U.
Kowalski, et al.

Suggestions for HW7

- Write a function that takes control points and a \((u,v)\) pair and returns a 3D point on patch
- Use formula or de Casteljau Algorithm to compute point
- Compute an array of 3D points that lie on the patch with a double loop that increments through \(u \) and \(v \), from 0 to 1
 - Iterate over integers!
 - This would be an \(n \times m \) array, where \(n \) is the number of points in the \(u \) direction and \(m \) is the number in the \(v \) direction

Suggestions for HW7

- Use a double loop to iterate through \(i \) & \(j = 0 \to n-2 \) & \(0 \to m-2 \)
- For each \((i, j)\) pair you define two triangles. The first has vertices \([(i, j), [i+1, j], [i, j+1]]\). The 2nd triangle is defined with vertices \([(i+1, j), [i+1, j+1], [i, j+1]]\).
- Now you have a mesh defined like an SMF model. Modify your HW5 code to render it.

Suggestions for HW7

- Implement the interface that allows the user to change \(n \) and \(m \) (the resolution of the mesh)
- When these values are changed by the user, you'll need to regenerate the mesh
- Flip normals that face away from the eye point, so both sides of the mesh are shaded
 - Or take \(\text{abs}(L \cdot N) \)